Global carbon balance of the forest: satellite-based L-VOD results over the last decade

Autores
Wigneron, Jean Pierre; Ciais, Philippe; Li, Xiaojun; Brandt, Martin; Canadell, Josep G.; Tian, Feng; Wang, Huan; Bastos, Ana; Fan, Lei; Gatica, Mario Gabriel; Kashyap, Rahul; Liu, Xiangzhuo; Sitch, Stephen; Tao, Shengli; Xiao, Xiangming; Yang, Hui; Espinoza Villar, Jhan Carlo; Frappart, Frederic; Li, Wei; Qin, Yuanwei; De Truchis, Aurélien; Fensholt, Rasmus
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Monitoring forest carbon (C) stocks is essential to better assess their role in the global carbon balance, and to better model and predict long-term trends and inter-annual variability in atmospheric CO2 concentrations. On a national scale, national forest inventories (NFIs) can provide estimates of forest carbon stocks, but these estimates are only available in certain countries, are limited by time lags due to periodic revisits, and cannot provide spatially continuous mapping of forests. In this context, remote sensing offers many advantages for monitoring above-ground biomass (AGB) on a global scale with good spatial (50–100 m) and temporal (annual) resolutions. Remote sensing has been used for several decades to monitor vegetation. However, traditional methods of monitoring AGB using optical or microwave sensors are affected by saturation effects for moderately or densely vegetated canopies, limiting their performance. Low-frequency passive microwave remote sensing is less affected by these saturation effects: saturation only occurs at AGB levels of around 400 t/ha at L-band (frequency of around 1.4 GHz). Despite its coarse spatial resolution of the order of 25 km × 25 km, this method based on the L-VOD (vegetation optical depth at L-band) index has recently established itself as an essential approach for monitoring annual variations in forest AGB on a continental scale. Thus, L-VOD has been applied to forest monitoring in many continents and biomes: in the tropics (especially in the Amazon and Congo basins), in boreal regions (Siberia, Canada), in Europe, China, Australia, etc. However, no reference study has yet been published to analyze L-VOD in detail in terms of capabilities, validation and results. This paper fills this gap by presenting the physical principles of L-VOD calculation, analyzing the performance of L-VOD for monitoring AGB and reviewing the main applications of L-VOD for tracking the carbon balance of global vegetation over the last decade (2010–2019).
Fil: Wigneron, Jean Pierre. Institut National de la Recherche Agronomique; Francia
Fil: Ciais, Philippe. Universite Paris-Saclay ;
Fil: Li, Xiaojun. Centre Nouvelle - Aquitaine Bordeaux ; Instituto National de Recherches Agronomiques, Alimetation Et Environnement;
Fil: Brandt, Martin. Universidad de Copenhagen; Dinamarca
Fil: Canadell, Josep G.. No especifíca;
Fil: Tian, Feng. Wuhan University; China
Fil: Wang, Huan. Peking University; China
Fil: Bastos, Ana. Universitat Technical Zu Munich; Alemania
Fil: Fan, Lei. No especifíca;
Fil: Gatica, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Biología; Argentina
Fil: Kashyap, Rahul. No especifíca;
Fil: Liu, Xiangzhuo. Institut National de la Recherche Agronomique; Francia
Fil: Sitch, Stephen. University of Exeter; Reino Unido
Fil: Tao, Shengli. Peking University; China
Fil: Xiao, Xiangming. University of Oklahoma; Estados Unidos
Fil: Yang, Hui. Max Planck Institute Of Biochemistry.; Alemania
Fil: Espinoza Villar, Jhan Carlo. No especifíca;
Fil: Frappart, Frederic. Institut National de la Recherche Agronomique; Francia
Fil: Li, Wei. Tsinghua University; China
Fil: Qin, Yuanwei. Oklahoma State University; Estados Unidos
Fil: De Truchis, Aurélien. No especifíca;
Fil: Fensholt, Rasmus. Universidad de Copenhagen; Dinamarca
Materia
L-VOD
PASSIVE MICROWAVE
FOREST
BIOMASS
GLOBAL CARBON CYCLE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/266734

id CONICETDig_4bbba80cf8b7e1ee3197ed15a533f4f3
oai_identifier_str oai:ri.conicet.gov.ar:11336/266734
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Global carbon balance of the forest: satellite-based L-VOD results over the last decadeWigneron, Jean PierreCiais, PhilippeLi, XiaojunBrandt, MartinCanadell, Josep G.Tian, FengWang, HuanBastos, AnaFan, LeiGatica, Mario GabrielKashyap, RahulLiu, XiangzhuoSitch, StephenTao, ShengliXiao, XiangmingYang, HuiEspinoza Villar, Jhan CarloFrappart, FredericLi, WeiQin, YuanweiDe Truchis, AurélienFensholt, RasmusL-VODPASSIVE MICROWAVEFORESTBIOMASSGLOBAL CARBON CYCLEhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Monitoring forest carbon (C) stocks is essential to better assess their role in the global carbon balance, and to better model and predict long-term trends and inter-annual variability in atmospheric CO2 concentrations. On a national scale, national forest inventories (NFIs) can provide estimates of forest carbon stocks, but these estimates are only available in certain countries, are limited by time lags due to periodic revisits, and cannot provide spatially continuous mapping of forests. In this context, remote sensing offers many advantages for monitoring above-ground biomass (AGB) on a global scale with good spatial (50–100 m) and temporal (annual) resolutions. Remote sensing has been used for several decades to monitor vegetation. However, traditional methods of monitoring AGB using optical or microwave sensors are affected by saturation effects for moderately or densely vegetated canopies, limiting their performance. Low-frequency passive microwave remote sensing is less affected by these saturation effects: saturation only occurs at AGB levels of around 400 t/ha at L-band (frequency of around 1.4 GHz). Despite its coarse spatial resolution of the order of 25 km × 25 km, this method based on the L-VOD (vegetation optical depth at L-band) index has recently established itself as an essential approach for monitoring annual variations in forest AGB on a continental scale. Thus, L-VOD has been applied to forest monitoring in many continents and biomes: in the tropics (especially in the Amazon and Congo basins), in boreal regions (Siberia, Canada), in Europe, China, Australia, etc. However, no reference study has yet been published to analyze L-VOD in detail in terms of capabilities, validation and results. This paper fills this gap by presenting the physical principles of L-VOD calculation, analyzing the performance of L-VOD for monitoring AGB and reviewing the main applications of L-VOD for tracking the carbon balance of global vegetation over the last decade (2010–2019).Fil: Wigneron, Jean Pierre. Institut National de la Recherche Agronomique; FranciaFil: Ciais, Philippe. Universite Paris-Saclay ;Fil: Li, Xiaojun. Centre Nouvelle - Aquitaine Bordeaux ; Instituto National de Recherches Agronomiques, Alimetation Et Environnement;Fil: Brandt, Martin. Universidad de Copenhagen; DinamarcaFil: Canadell, Josep G.. No especifíca;Fil: Tian, Feng. Wuhan University; ChinaFil: Wang, Huan. Peking University; ChinaFil: Bastos, Ana. Universitat Technical Zu Munich; AlemaniaFil: Fan, Lei. No especifíca;Fil: Gatica, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Biología; ArgentinaFil: Kashyap, Rahul. No especifíca;Fil: Liu, Xiangzhuo. Institut National de la Recherche Agronomique; FranciaFil: Sitch, Stephen. University of Exeter; Reino UnidoFil: Tao, Shengli. Peking University; ChinaFil: Xiao, Xiangming. University of Oklahoma; Estados UnidosFil: Yang, Hui. Max Planck Institute Of Biochemistry.; AlemaniaFil: Espinoza Villar, Jhan Carlo. No especifíca;Fil: Frappart, Frederic. Institut National de la Recherche Agronomique; FranciaFil: Li, Wei. Tsinghua University; ChinaFil: Qin, Yuanwei. Oklahoma State University; Estados UnidosFil: De Truchis, Aurélien. No especifíca;Fil: Fensholt, Rasmus. Universidad de Copenhagen; DinamarcaFrontiers Media2024-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/266734Wigneron, Jean Pierre; Ciais, Philippe; Li, Xiaojun; Brandt, Martin; Canadell, Josep G.; et al.; Global carbon balance of the forest: satellite-based L-VOD results over the last decade; Frontiers Media; Frontiers in Remote Sensing; 5; 5-2024; 1-152673-6187CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frsen.2024.1338618/fullinfo:eu-repo/semantics/altIdentifier/doi/10.3389/frsen.2024.1338618info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:11:53Zoai:ri.conicet.gov.ar:11336/266734instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:11:54.178CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Global carbon balance of the forest: satellite-based L-VOD results over the last decade
title Global carbon balance of the forest: satellite-based L-VOD results over the last decade
spellingShingle Global carbon balance of the forest: satellite-based L-VOD results over the last decade
Wigneron, Jean Pierre
L-VOD
PASSIVE MICROWAVE
FOREST
BIOMASS
GLOBAL CARBON CYCLE
title_short Global carbon balance of the forest: satellite-based L-VOD results over the last decade
title_full Global carbon balance of the forest: satellite-based L-VOD results over the last decade
title_fullStr Global carbon balance of the forest: satellite-based L-VOD results over the last decade
title_full_unstemmed Global carbon balance of the forest: satellite-based L-VOD results over the last decade
title_sort Global carbon balance of the forest: satellite-based L-VOD results over the last decade
dc.creator.none.fl_str_mv Wigneron, Jean Pierre
Ciais, Philippe
Li, Xiaojun
Brandt, Martin
Canadell, Josep G.
Tian, Feng
Wang, Huan
Bastos, Ana
Fan, Lei
Gatica, Mario Gabriel
Kashyap, Rahul
Liu, Xiangzhuo
Sitch, Stephen
Tao, Shengli
Xiao, Xiangming
Yang, Hui
Espinoza Villar, Jhan Carlo
Frappart, Frederic
Li, Wei
Qin, Yuanwei
De Truchis, Aurélien
Fensholt, Rasmus
author Wigneron, Jean Pierre
author_facet Wigneron, Jean Pierre
Ciais, Philippe
Li, Xiaojun
Brandt, Martin
Canadell, Josep G.
Tian, Feng
Wang, Huan
Bastos, Ana
Fan, Lei
Gatica, Mario Gabriel
Kashyap, Rahul
Liu, Xiangzhuo
Sitch, Stephen
Tao, Shengli
Xiao, Xiangming
Yang, Hui
Espinoza Villar, Jhan Carlo
Frappart, Frederic
Li, Wei
Qin, Yuanwei
De Truchis, Aurélien
Fensholt, Rasmus
author_role author
author2 Ciais, Philippe
Li, Xiaojun
Brandt, Martin
Canadell, Josep G.
Tian, Feng
Wang, Huan
Bastos, Ana
Fan, Lei
Gatica, Mario Gabriel
Kashyap, Rahul
Liu, Xiangzhuo
Sitch, Stephen
Tao, Shengli
Xiao, Xiangming
Yang, Hui
Espinoza Villar, Jhan Carlo
Frappart, Frederic
Li, Wei
Qin, Yuanwei
De Truchis, Aurélien
Fensholt, Rasmus
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv L-VOD
PASSIVE MICROWAVE
FOREST
BIOMASS
GLOBAL CARBON CYCLE
topic L-VOD
PASSIVE MICROWAVE
FOREST
BIOMASS
GLOBAL CARBON CYCLE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Monitoring forest carbon (C) stocks is essential to better assess their role in the global carbon balance, and to better model and predict long-term trends and inter-annual variability in atmospheric CO2 concentrations. On a national scale, national forest inventories (NFIs) can provide estimates of forest carbon stocks, but these estimates are only available in certain countries, are limited by time lags due to periodic revisits, and cannot provide spatially continuous mapping of forests. In this context, remote sensing offers many advantages for monitoring above-ground biomass (AGB) on a global scale with good spatial (50–100 m) and temporal (annual) resolutions. Remote sensing has been used for several decades to monitor vegetation. However, traditional methods of monitoring AGB using optical or microwave sensors are affected by saturation effects for moderately or densely vegetated canopies, limiting their performance. Low-frequency passive microwave remote sensing is less affected by these saturation effects: saturation only occurs at AGB levels of around 400 t/ha at L-band (frequency of around 1.4 GHz). Despite its coarse spatial resolution of the order of 25 km × 25 km, this method based on the L-VOD (vegetation optical depth at L-band) index has recently established itself as an essential approach for monitoring annual variations in forest AGB on a continental scale. Thus, L-VOD has been applied to forest monitoring in many continents and biomes: in the tropics (especially in the Amazon and Congo basins), in boreal regions (Siberia, Canada), in Europe, China, Australia, etc. However, no reference study has yet been published to analyze L-VOD in detail in terms of capabilities, validation and results. This paper fills this gap by presenting the physical principles of L-VOD calculation, analyzing the performance of L-VOD for monitoring AGB and reviewing the main applications of L-VOD for tracking the carbon balance of global vegetation over the last decade (2010–2019).
Fil: Wigneron, Jean Pierre. Institut National de la Recherche Agronomique; Francia
Fil: Ciais, Philippe. Universite Paris-Saclay ;
Fil: Li, Xiaojun. Centre Nouvelle - Aquitaine Bordeaux ; Instituto National de Recherches Agronomiques, Alimetation Et Environnement;
Fil: Brandt, Martin. Universidad de Copenhagen; Dinamarca
Fil: Canadell, Josep G.. No especifíca;
Fil: Tian, Feng. Wuhan University; China
Fil: Wang, Huan. Peking University; China
Fil: Bastos, Ana. Universitat Technical Zu Munich; Alemania
Fil: Fan, Lei. No especifíca;
Fil: Gatica, Mario Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Centro de Investigaciones de la Geosfera y Biosfera. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones de la Geosfera y Biosfera; Argentina. Universidad Nacional de San Juan. Facultad de Ciencias Exactas Físicas y Naturales. Departamento de Biología; Argentina
Fil: Kashyap, Rahul. No especifíca;
Fil: Liu, Xiangzhuo. Institut National de la Recherche Agronomique; Francia
Fil: Sitch, Stephen. University of Exeter; Reino Unido
Fil: Tao, Shengli. Peking University; China
Fil: Xiao, Xiangming. University of Oklahoma; Estados Unidos
Fil: Yang, Hui. Max Planck Institute Of Biochemistry.; Alemania
Fil: Espinoza Villar, Jhan Carlo. No especifíca;
Fil: Frappart, Frederic. Institut National de la Recherche Agronomique; Francia
Fil: Li, Wei. Tsinghua University; China
Fil: Qin, Yuanwei. Oklahoma State University; Estados Unidos
Fil: De Truchis, Aurélien. No especifíca;
Fil: Fensholt, Rasmus. Universidad de Copenhagen; Dinamarca
description Monitoring forest carbon (C) stocks is essential to better assess their role in the global carbon balance, and to better model and predict long-term trends and inter-annual variability in atmospheric CO2 concentrations. On a national scale, national forest inventories (NFIs) can provide estimates of forest carbon stocks, but these estimates are only available in certain countries, are limited by time lags due to periodic revisits, and cannot provide spatially continuous mapping of forests. In this context, remote sensing offers many advantages for monitoring above-ground biomass (AGB) on a global scale with good spatial (50–100 m) and temporal (annual) resolutions. Remote sensing has been used for several decades to monitor vegetation. However, traditional methods of monitoring AGB using optical or microwave sensors are affected by saturation effects for moderately or densely vegetated canopies, limiting their performance. Low-frequency passive microwave remote sensing is less affected by these saturation effects: saturation only occurs at AGB levels of around 400 t/ha at L-band (frequency of around 1.4 GHz). Despite its coarse spatial resolution of the order of 25 km × 25 km, this method based on the L-VOD (vegetation optical depth at L-band) index has recently established itself as an essential approach for monitoring annual variations in forest AGB on a continental scale. Thus, L-VOD has been applied to forest monitoring in many continents and biomes: in the tropics (especially in the Amazon and Congo basins), in boreal regions (Siberia, Canada), in Europe, China, Australia, etc. However, no reference study has yet been published to analyze L-VOD in detail in terms of capabilities, validation and results. This paper fills this gap by presenting the physical principles of L-VOD calculation, analyzing the performance of L-VOD for monitoring AGB and reviewing the main applications of L-VOD for tracking the carbon balance of global vegetation over the last decade (2010–2019).
publishDate 2024
dc.date.none.fl_str_mv 2024-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/266734
Wigneron, Jean Pierre; Ciais, Philippe; Li, Xiaojun; Brandt, Martin; Canadell, Josep G.; et al.; Global carbon balance of the forest: satellite-based L-VOD results over the last decade; Frontiers Media; Frontiers in Remote Sensing; 5; 5-2024; 1-15
2673-6187
CONICET Digital
CONICET
url http://hdl.handle.net/11336/266734
identifier_str_mv Wigneron, Jean Pierre; Ciais, Philippe; Li, Xiaojun; Brandt, Martin; Canadell, Josep G.; et al.; Global carbon balance of the forest: satellite-based L-VOD results over the last decade; Frontiers Media; Frontiers in Remote Sensing; 5; 5-2024; 1-15
2673-6187
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.frontiersin.org/articles/10.3389/frsen.2024.1338618/full
info:eu-repo/semantics/altIdentifier/doi/10.3389/frsen.2024.1338618
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Frontiers Media
publisher.none.fl_str_mv Frontiers Media
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614021998706688
score 13.070432