Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4...

Autores
Yakal Kremki, Kyle; Mogni, Liliana Verónica; Montenegro Hernandez, Alejandra; Caneiro, Alberto; Barnett, Scott A.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.
Fil: Yakal Kremki, Kyle. Northwestern University; Estados Unidos
Fil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barnett, Scott A.. Northwestern University; Estados Unidos
Materia
Electrodes
Interstitial Oxygen
Fib-Sem
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32883

id CONICETDig_4b71951a02485c094450a3f9d22040b6
oai_identifier_str oai:ri.conicet.gov.ar:11336/32883
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δYakal Kremki, KyleMogni, Liliana VerónicaMontenegro Hernandez, AlejandraCaneiro, AlbertoBarnett, Scott A.ElectrodesInterstitial OxygenFib-Semhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.Fil: Yakal Kremki, Kyle. Northwestern University; Estados UnidosFil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barnett, Scott A.. Northwestern University; Estados UnidosElectrochemical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32883Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F13740013-4651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1149/2.0521414jesinfo:eu-repo/semantics/altIdentifier/url/http://jes.ecsdl.org/content/161/14/F1366info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:49Zoai:ri.conicet.gov.ar:11336/32883instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:49.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
title Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
spellingShingle Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
Yakal Kremki, Kyle
Electrodes
Interstitial Oxygen
Fib-Sem
title_short Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
title_full Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
title_fullStr Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
title_full_unstemmed Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
title_sort Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ
dc.creator.none.fl_str_mv Yakal Kremki, Kyle
Mogni, Liliana Verónica
Montenegro Hernandez, Alejandra
Caneiro, Alberto
Barnett, Scott A.
author Yakal Kremki, Kyle
author_facet Yakal Kremki, Kyle
Mogni, Liliana Verónica
Montenegro Hernandez, Alejandra
Caneiro, Alberto
Barnett, Scott A.
author_role author
author2 Mogni, Liliana Verónica
Montenegro Hernandez, Alejandra
Caneiro, Alberto
Barnett, Scott A.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Electrodes
Interstitial Oxygen
Fib-Sem
topic Electrodes
Interstitial Oxygen
Fib-Sem
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.
Fil: Yakal Kremki, Kyle. Northwestern University; Estados Unidos
Fil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barnett, Scott A.. Northwestern University; Estados Unidos
description Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.
publishDate 2014
dc.date.none.fl_str_mv 2014-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32883
Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F1374
0013-4651
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32883
identifier_str_mv Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F1374
0013-4651
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1149/2.0521414jes
info:eu-repo/semantics/altIdentifier/url/http://jes.ecsdl.org/content/161/14/F1366
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Electrochemical Society
publisher.none.fl_str_mv Electrochemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980610408185856
score 12.993085