Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4...
- Autores
- Yakal Kremki, Kyle; Mogni, Liliana Verónica; Montenegro Hernandez, Alejandra; Caneiro, Alberto; Barnett, Scott A.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.
Fil: Yakal Kremki, Kyle. Northwestern University; Estados Unidos
Fil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Barnett, Scott A.. Northwestern University; Estados Unidos - Materia
-
Electrodes
Interstitial Oxygen
Fib-Sem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32883
Ver los metadatos del registro completo
id |
CONICETDig_4b71951a02485c094450a3f9d22040b6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32883 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δYakal Kremki, KyleMogni, Liliana VerónicaMontenegro Hernandez, AlejandraCaneiro, AlbertoBarnett, Scott A.ElectrodesInterstitial OxygenFib-Semhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites.Fil: Yakal Kremki, Kyle. Northwestern University; Estados UnidosFil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Barnett, Scott A.. Northwestern University; Estados UnidosElectrochemical Society2014-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32883Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F13740013-4651CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1149/2.0521414jesinfo:eu-repo/semantics/altIdentifier/url/http://jes.ecsdl.org/content/161/14/F1366info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:11:49Zoai:ri.conicet.gov.ar:11336/32883instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:11:49.944CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
title |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
spellingShingle |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ Yakal Kremki, Kyle Electrodes Interstitial Oxygen Fib-Sem |
title_short |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
title_full |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
title_fullStr |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
title_full_unstemmed |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
title_sort |
Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ |
dc.creator.none.fl_str_mv |
Yakal Kremki, Kyle Mogni, Liliana Verónica Montenegro Hernandez, Alejandra Caneiro, Alberto Barnett, Scott A. |
author |
Yakal Kremki, Kyle |
author_facet |
Yakal Kremki, Kyle Mogni, Liliana Verónica Montenegro Hernandez, Alejandra Caneiro, Alberto Barnett, Scott A. |
author_role |
author |
author2 |
Mogni, Liliana Verónica Montenegro Hernandez, Alejandra Caneiro, Alberto Barnett, Scott A. |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Electrodes Interstitial Oxygen Fib-Sem |
topic |
Electrodes Interstitial Oxygen Fib-Sem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites. Fil: Yakal Kremki, Kyle. Northwestern University; Estados Unidos Fil: Mogni, Liliana Verónica. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Montenegro Hernandez, Alejandra. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Caneiro, Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Barnett, Scott A.. Northwestern University; Estados Unidos |
description |
Oxygen reduction kinetic parameters – oxygen ion diffusion Dδ, molar surface exchange rate ℜO and surface exchange coefficient k – were determined for porous Nd2NiO4+δ solid oxide fuel cell cathodes as a function of temperature and oxygen partial pressure by analyzing electrochemical impedance spectroscopy data using the Adler-Lane-Steele model. Electrode microstructural data used in the model calculations were obtained by three-dimensional focused ion beam-scanning electron microscope tomography. Cathodes were fabricated using Nd2NiO4+δ powder derived from a sol-gel method and were tested as symmetrical cells with LSGM electrolytes. The oxygen surface exchange rate exhibited a power-law dependency with oxygen partial pressure, whereas the oxygen diffusivity values obtained varied only slightly. The present analysis suggests that the O-interstitial diffusion has a bulk transport path, whereas the surface exchange process involves dissociative adsorption on surface sites followed by O-incorporation. For Nd2NiO4+δ at 700°C and 0.2 atm oxygen pressure, Dδ = 5.6·10−8 cm2s−1, ℜO = 2.5·10−8 mol·cm−2 s−1. The present Dδ and ℜO values and their activation energies are slightly different to those previously reported for Nd2NiO4+δ using other measurement methodologies, and lower than typical state-of-the-art Co-rich perovskites. However, the average kδ = 1.0 10−5 cm·s−1 at 700°C is comparable to those of fast oxygen exchange rate perovskites. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32883 Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F1374 0013-4651 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32883 |
identifier_str_mv |
Caneiro, Alberto; Barnett, Scott A.; Montenegro Hernandez, Alejandra; Mogni, Liliana Verónica; Yakal Kremki, Kyle; Determination of Electrode Oxygen Transport Kinetics Using Electrochemical Impedance Spectroscopy Combined with Three-Dimensional Microstructure Measurement: Application to Nd2NiO4+δ; Electrochemical Society; Journal of the Electrochemical Society; 161; 14; 10-2014; F1366-F1374 0013-4651 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1149/2.0521414jes info:eu-repo/semantics/altIdentifier/url/http://jes.ecsdl.org/content/161/14/F1366 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Electrochemical Society |
publisher.none.fl_str_mv |
Electrochemical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980610408185856 |
score |
12.993085 |