A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models
- Autores
- Barttfeld, Mariana; Aguirre, Pio Antonio; Grossmann, Ignacio E.
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This paper describes an optimization procedure for the synthesis of complex distillation configurations. A superstructure based on the Reversible Distillation Sequence Model (RDSM) is proposed embedding all possible alternative designs using tray-by-tray models. Generalize disjunctive programming (GDP) is used to model the superstructure. Each column section of the superstructure is modeled using rigorous MESH equations. Due to the large size and complexity of the formulation, as well as the great difficulty in coverging the corresponding equations, a decomposition solution strategy is proposed where discrete decisions are decomposed into two hierarchical levels within an iterative procedure. In the first level, the column sections are selected yielding a candidate configuration. In the second level, the feed location and the number of trays of the selected sections are optimized. A preprocessing phase including thermodynamic information is considered to provide a good starting point to the algorithm in order to improve the convergence and robustness of the method. Examples are presented for zeotropic and azeotropic multicomponent mixtures to illustrate the performance of the proposed method. Non-trivial configurations are obtained involving modest solution times.
Fil: Barttfeld, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos - Materia
-
COMPLEX DISTILLATION COLUMNS
DISJUNCTIVE PROGRAMMING
INITIALIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/186295
Ver los metadatos del registro completo
id |
CONICETDig_4b5d3387923021d530d11b18d907fa8c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/186295 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP ModelsBarttfeld, MarianaAguirre, Pio AntonioGrossmann, Ignacio E.COMPLEX DISTILLATION COLUMNSDISJUNCTIVE PROGRAMMINGINITIALIZATIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2This paper describes an optimization procedure for the synthesis of complex distillation configurations. A superstructure based on the Reversible Distillation Sequence Model (RDSM) is proposed embedding all possible alternative designs using tray-by-tray models. Generalize disjunctive programming (GDP) is used to model the superstructure. Each column section of the superstructure is modeled using rigorous MESH equations. Due to the large size and complexity of the formulation, as well as the great difficulty in coverging the corresponding equations, a decomposition solution strategy is proposed where discrete decisions are decomposed into two hierarchical levels within an iterative procedure. In the first level, the column sections are selected yielding a candidate configuration. In the second level, the feed location and the number of trays of the selected sections are optimized. A preprocessing phase including thermodynamic information is considered to provide a good starting point to the algorithm in order to improve the convergence and robustness of the method. Examples are presented for zeotropic and azeotropic multicomponent mixtures to illustrate the performance of the proposed method. Non-trivial configurations are obtained involving modest solution times.Fil: Barttfeld, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados UnidosPergamon-Elsevier Science Ltd2004-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/186295Barttfeld, Mariana; Aguirre, Pio Antonio; Grossmann, Ignacio E.; A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 28; 11; 10-2004; 2165-21880098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135404000699info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2004.03.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:57:07Zoai:ri.conicet.gov.ar:11336/186295instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:57:07.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
title |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
spellingShingle |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models Barttfeld, Mariana COMPLEX DISTILLATION COLUMNS DISJUNCTIVE PROGRAMMING INITIALIZATION |
title_short |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
title_full |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
title_fullStr |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
title_full_unstemmed |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
title_sort |
A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models |
dc.creator.none.fl_str_mv |
Barttfeld, Mariana Aguirre, Pio Antonio Grossmann, Ignacio E. |
author |
Barttfeld, Mariana |
author_facet |
Barttfeld, Mariana Aguirre, Pio Antonio Grossmann, Ignacio E. |
author_role |
author |
author2 |
Aguirre, Pio Antonio Grossmann, Ignacio E. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
COMPLEX DISTILLATION COLUMNS DISJUNCTIVE PROGRAMMING INITIALIZATION |
topic |
COMPLEX DISTILLATION COLUMNS DISJUNCTIVE PROGRAMMING INITIALIZATION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This paper describes an optimization procedure for the synthesis of complex distillation configurations. A superstructure based on the Reversible Distillation Sequence Model (RDSM) is proposed embedding all possible alternative designs using tray-by-tray models. Generalize disjunctive programming (GDP) is used to model the superstructure. Each column section of the superstructure is modeled using rigorous MESH equations. Due to the large size and complexity of the formulation, as well as the great difficulty in coverging the corresponding equations, a decomposition solution strategy is proposed where discrete decisions are decomposed into two hierarchical levels within an iterative procedure. In the first level, the column sections are selected yielding a candidate configuration. In the second level, the feed location and the number of trays of the selected sections are optimized. A preprocessing phase including thermodynamic information is considered to provide a good starting point to the algorithm in order to improve the convergence and robustness of the method. Examples are presented for zeotropic and azeotropic multicomponent mixtures to illustrate the performance of the proposed method. Non-trivial configurations are obtained involving modest solution times. Fil: Barttfeld, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Aguirre, Pio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Grossmann, Ignacio E.. University of Carnegie Mellon; Estados Unidos |
description |
This paper describes an optimization procedure for the synthesis of complex distillation configurations. A superstructure based on the Reversible Distillation Sequence Model (RDSM) is proposed embedding all possible alternative designs using tray-by-tray models. Generalize disjunctive programming (GDP) is used to model the superstructure. Each column section of the superstructure is modeled using rigorous MESH equations. Due to the large size and complexity of the formulation, as well as the great difficulty in coverging the corresponding equations, a decomposition solution strategy is proposed where discrete decisions are decomposed into two hierarchical levels within an iterative procedure. In the first level, the column sections are selected yielding a candidate configuration. In the second level, the feed location and the number of trays of the selected sections are optimized. A preprocessing phase including thermodynamic information is considered to provide a good starting point to the algorithm in order to improve the convergence and robustness of the method. Examples are presented for zeotropic and azeotropic multicomponent mixtures to illustrate the performance of the proposed method. Non-trivial configurations are obtained involving modest solution times. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/186295 Barttfeld, Mariana; Aguirre, Pio Antonio; Grossmann, Ignacio E.; A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 28; 11; 10-2004; 2165-2188 0098-1354 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/186295 |
identifier_str_mv |
Barttfeld, Mariana; Aguirre, Pio Antonio; Grossmann, Ignacio E.; A Decomposition Method for Synthesizing Complex Column Configurations Using Tray-by-Tray GDP Models; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 28; 11; 10-2004; 2165-2188 0098-1354 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135404000699 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2004.03.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613710651326464 |
score |
13.070432 |