Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re

Autores
Farrugia, C. J.; Erkaev, N. V.; Torbert, R.; Biernat, H. K.; Gratton, Fausto Tulio Livio; Szabo, A.; Kucharek, H.; Matsui, H.; Lin, R. P.; Ogilvie, K.; Lepping, R. P.; Smith, C. W.
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X ∼ -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v ∼ 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability. Copyright 2010 by the American Geophysical Union.
Fil: Farrugia, C. J.. University Of New Hampshire Durham; Reino Unido
Fil: Erkaev, N. V.. Institute Of Computational Modelling Of The Siberian Branch Of The Ras; Rusia
Fil: Torbert, R.. University Of New Hampshire Durham; Reino Unido
Fil: Biernat, H. K.. Osterreichische Akademie Der Wissenschaften; Austria. Karl-franzens-universitat Graz; Austria
Fil: Gratton, Fausto Tulio Livio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Szabo, A.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Kucharek, H.. University Of New Hampshire Durham; Reino Unido
Fil: Matsui, H.. University Of New Hampshire Durham; Reino Unido
Fil: Lin, R. P.. Space Sciences Laboratory At Uc Berkeley; Reino Unido
Fil: Ogilvie, K.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Lepping, R. P.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Smith, C. W.. University Of New Hampshire Durham; Reino Unido
Materia
MAGNETOSPHERE
KELVIN-HELMHOLTZ
WAVES
INSTABILITIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/61502

id CONICETDig_4b18e2d28114165a360c015ce2fb1a4e
oai_identifier_str oai:ri.conicet.gov.ar:11336/61502
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 ReFarrugia, C. J.Erkaev, N. V.Torbert, R.Biernat, H. K.Gratton, Fausto Tulio LivioSzabo, A.Kucharek, H.Matsui, H.Lin, R. P.Ogilvie, K.Lepping, R. P.Smith, C. W.MAGNETOSPHEREKELVIN-HELMHOLTZWAVESINSTABILITIEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X ∼ -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v ∼ 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability. Copyright 2010 by the American Geophysical Union.Fil: Farrugia, C. J.. University Of New Hampshire Durham; Reino UnidoFil: Erkaev, N. V.. Institute Of Computational Modelling Of The Siberian Branch Of The Ras; RusiaFil: Torbert, R.. University Of New Hampshire Durham; Reino UnidoFil: Biernat, H. K.. Osterreichische Akademie Der Wissenschaften; Austria. Karl-franzens-universitat Graz; AustriaFil: Gratton, Fausto Tulio Livio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; ArgentinaFil: Szabo, A.. Nasa Goddard Space Flight Center; Estados UnidosFil: Kucharek, H.. University Of New Hampshire Durham; Reino UnidoFil: Matsui, H.. University Of New Hampshire Durham; Reino UnidoFil: Lin, R. P.. Space Sciences Laboratory At Uc Berkeley; Reino UnidoFil: Ogilvie, K.. Nasa Goddard Space Flight Center; Estados UnidosFil: Lepping, R. P.. Nasa Goddard Space Flight Center; Estados UnidosFil: Smith, C. W.. University Of New Hampshire Durham; Reino UnidoBlackwell Publishing Ltd2010-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/61502Farrugia, C. J.; Erkaev, N. V.; Torbert, R.; Biernat, H. K.; Gratton, Fausto Tulio Livio; et al.; Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re; Blackwell Publishing Ltd; Journal of Geophysical Research: Space Physics; 115; 8; 8-2010; 1-182169-9402CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1029/2009JA015128info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:58:13Zoai:ri.conicet.gov.ar:11336/61502instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:58:14.092CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
title Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
spellingShingle Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
Farrugia, C. J.
MAGNETOSPHERE
KELVIN-HELMHOLTZ
WAVES
INSTABILITIES
title_short Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
title_full Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
title_fullStr Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
title_full_unstemmed Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
title_sort Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re
dc.creator.none.fl_str_mv Farrugia, C. J.
Erkaev, N. V.
Torbert, R.
Biernat, H. K.
Gratton, Fausto Tulio Livio
Szabo, A.
Kucharek, H.
Matsui, H.
Lin, R. P.
Ogilvie, K.
Lepping, R. P.
Smith, C. W.
author Farrugia, C. J.
author_facet Farrugia, C. J.
Erkaev, N. V.
Torbert, R.
Biernat, H. K.
Gratton, Fausto Tulio Livio
Szabo, A.
Kucharek, H.
Matsui, H.
Lin, R. P.
Ogilvie, K.
Lepping, R. P.
Smith, C. W.
author_role author
author2 Erkaev, N. V.
Torbert, R.
Biernat, H. K.
Gratton, Fausto Tulio Livio
Szabo, A.
Kucharek, H.
Matsui, H.
Lin, R. P.
Ogilvie, K.
Lepping, R. P.
Smith, C. W.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv MAGNETOSPHERE
KELVIN-HELMHOLTZ
WAVES
INSTABILITIES
topic MAGNETOSPHERE
KELVIN-HELMHOLTZ
WAVES
INSTABILITIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X ∼ -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v ∼ 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability. Copyright 2010 by the American Geophysical Union.
Fil: Farrugia, C. J.. University Of New Hampshire Durham; Reino Unido
Fil: Erkaev, N. V.. Institute Of Computational Modelling Of The Siberian Branch Of The Ras; Rusia
Fil: Torbert, R.. University Of New Hampshire Durham; Reino Unido
Fil: Biernat, H. K.. Osterreichische Akademie Der Wissenschaften; Austria. Karl-franzens-universitat Graz; Austria
Fil: Gratton, Fausto Tulio Livio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física del Plasma. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física del Plasma; Argentina
Fil: Szabo, A.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Kucharek, H.. University Of New Hampshire Durham; Reino Unido
Fil: Matsui, H.. University Of New Hampshire Durham; Reino Unido
Fil: Lin, R. P.. Space Sciences Laboratory At Uc Berkeley; Reino Unido
Fil: Ogilvie, K.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Lepping, R. P.. Nasa Goddard Space Flight Center; Estados Unidos
Fil: Smith, C. W.. University Of New Hampshire Durham; Reino Unido
description While there are many approximations describing the flow of the solar wind past the magnetosphere in the magnetosheath, the case of perfectly aligned (parallel or anti-parallel) interplanetary magnetic field (IMF) and solar wind flow vectors can be treated exactly in a magnetohydrodynamic (MHD) approach. In this work we examine a case of nearly-opposed (to within 15) interplanetary field and flow vectors, which occurred on October 24-25, 2001 during passage of the last interplanetary coronal mass ejection in an ejecta merger. Interplanetary data are from the ACE spacecraft. Simultaneously Wind was crossing the near-Earth (X ∼ -13 Re) geomagnetic tail and subsequently made an approximately 5-hour-long magnetosheath crossing close to the ecliptic plane (Z = -0.7 Re). Geomagnetic activity was returning steadily to quiet, "ground" conditions. We first compare the predictions of the Spreiter and Rizzi theory with the Wind magnetosheath observations and find fair agreement, in particular as regards the proportionality of the magnetic field strength and the product of the plasma density and bulk speed. We then carry out a small-perturbation analysis of the Spreiter and Rizzi solution to account for the small IMF components perpendicular to the flow vector. The resulting expression is compared to the time series of the observations and satisfactory agreement is obtained. We also present and discuss observations in the dawnside boundary layer of pulsed, high-speed (v ∼ 600 km/s) flows exceeding the solar wind flow speeds. We examine various generating mechanisms and suggest that the most likely cause is a wave of frequency 3.2 mHz excited at the inner edge of the boundary layer by the Kelvin-Helmholtz instability. Copyright 2010 by the American Geophysical Union.
publishDate 2010
dc.date.none.fl_str_mv 2010-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/61502
Farrugia, C. J.; Erkaev, N. V.; Torbert, R.; Biernat, H. K.; Gratton, Fausto Tulio Livio; et al.; Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re; Blackwell Publishing Ltd; Journal of Geophysical Research: Space Physics; 115; 8; 8-2010; 1-18
2169-9402
CONICET Digital
CONICET
url http://hdl.handle.net/11336/61502
identifier_str_mv Farrugia, C. J.; Erkaev, N. V.; Torbert, R.; Biernat, H. K.; Gratton, Fausto Tulio Livio; et al.; Magnetosheath for almost-aligned solar wind magnetic field and flow vectors: Wind observations across the dawnside magnetosheath at x = -12 Re; Blackwell Publishing Ltd; Journal of Geophysical Research: Space Physics; 115; 8; 8-2010; 1-18
2169-9402
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1029/2009JA015128
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Blackwell Publishing Ltd
publisher.none.fl_str_mv Blackwell Publishing Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083122042503168
score 13.22299