Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

Autores
Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; Rubi, Diego; Snoeck, E.; Mostovoy, M.; De Graaf, C.; Müller, A.; Döblinger, M.; Scheu, C.; Noheda, B.
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.
Fil: Farokhipoor, S.. University of Groningen; Países Bajos
Fil: Magén, C.. Universidad de Zaragoza; España
Fil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; España
Fil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Snoeck, E.. Universidad de Zaragoza; España
Fil: Mostovoy, M.. University of Groningen; Países Bajos
Fil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; España
Fil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Döblinger, M.. Technische Universitat Munchen; Alemania
Fil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Noheda, B.. University of Groningen; Países Bajos
Materia
Thin Films
Manganites
Domain Walls
Ferromagnetism
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/36587

id CONICETDig_4af2c636a8b293e442fe61994c4afd95
oai_identifier_str oai:ri.conicet.gov.ar:11336/36587
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Artificial chemical and magnetic structure at the domain walls of an epitaxial oxideFarokhipoor, S.Magén, C.Venkatesan, S.Íñiguez, J.Daumont, C.J.M.Rubi, DiegoSnoeck, E.Mostovoy, M.De Graaf, C.Müller, A.Döblinger, M.Scheu, C.Noheda, B.Thin FilmsManganitesDomain WallsFerromagnetismhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.Fil: Farokhipoor, S.. University of Groningen; Países BajosFil: Magén, C.. Universidad de Zaragoza; EspañaFil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Snoeck, E.. Universidad de Zaragoza; EspañaFil: Mostovoy, M.. University of Groningen; Países BajosFil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; EspañaFil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Döblinger, M.. Technische Universitat Munchen; AlemaniaFil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Noheda, B.. University of Groningen; Países BajosNature Publishing Group2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36587Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-3830028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/nature13918info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature13918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:26Zoai:ri.conicet.gov.ar:11336/36587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:27.179CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
title Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
spellingShingle Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
Farokhipoor, S.
Thin Films
Manganites
Domain Walls
Ferromagnetism
title_short Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
title_full Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
title_fullStr Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
title_full_unstemmed Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
title_sort Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
dc.creator.none.fl_str_mv Farokhipoor, S.
Magén, C.
Venkatesan, S.
Íñiguez, J.
Daumont, C.J.M.
Rubi, Diego
Snoeck, E.
Mostovoy, M.
De Graaf, C.
Müller, A.
Döblinger, M.
Scheu, C.
Noheda, B.
author Farokhipoor, S.
author_facet Farokhipoor, S.
Magén, C.
Venkatesan, S.
Íñiguez, J.
Daumont, C.J.M.
Rubi, Diego
Snoeck, E.
Mostovoy, M.
De Graaf, C.
Müller, A.
Döblinger, M.
Scheu, C.
Noheda, B.
author_role author
author2 Magén, C.
Venkatesan, S.
Íñiguez, J.
Daumont, C.J.M.
Rubi, Diego
Snoeck, E.
Mostovoy, M.
De Graaf, C.
Müller, A.
Döblinger, M.
Scheu, C.
Noheda, B.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Thin Films
Manganites
Domain Walls
Ferromagnetism
topic Thin Films
Manganites
Domain Walls
Ferromagnetism
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.
Fil: Farokhipoor, S.. University of Groningen; Países Bajos
Fil: Magén, C.. Universidad de Zaragoza; España
Fil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; España
Fil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Snoeck, E.. Universidad de Zaragoza; España
Fil: Mostovoy, M.. University of Groningen; Países Bajos
Fil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; España
Fil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Döblinger, M.. Technische Universitat Munchen; Alemania
Fil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Noheda, B.. University of Groningen; Países Bajos
description Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/36587
Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-383
0028-0836
CONICET Digital
CONICET
url http://hdl.handle.net/11336/36587
identifier_str_mv Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-383
0028-0836
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/nature13918
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature13918
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269756025995264
score 13.13397