Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide
- Autores
- Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; Rubi, Diego; Snoeck, E.; Mostovoy, M.; De Graaf, C.; Müller, A.; Döblinger, M.; Scheu, C.; Noheda, B.
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.
Fil: Farokhipoor, S.. University of Groningen; Países Bajos
Fil: Magén, C.. Universidad de Zaragoza; España
Fil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; España
Fil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Snoeck, E.. Universidad de Zaragoza; España
Fil: Mostovoy, M.. University of Groningen; Países Bajos
Fil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; España
Fil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Döblinger, M.. Technische Universitat Munchen; Alemania
Fil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina
Fil: Noheda, B.. University of Groningen; Países Bajos - Materia
-
Thin Films
Manganites
Domain Walls
Ferromagnetism - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/36587
Ver los metadatos del registro completo
id |
CONICETDig_4af2c636a8b293e442fe61994c4afd95 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/36587 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxideFarokhipoor, S.Magén, C.Venkatesan, S.Íñiguez, J.Daumont, C.J.M.Rubi, DiegoSnoeck, E.Mostovoy, M.De Graaf, C.Müller, A.Döblinger, M.Scheu, C.Noheda, B.Thin FilmsManganitesDomain WallsFerromagnetismhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.Fil: Farokhipoor, S.. University of Groningen; Países BajosFil: Magén, C.. Universidad de Zaragoza; EspañaFil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; EspañaFil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Snoeck, E.. Universidad de Zaragoza; EspañaFil: Mostovoy, M.. University of Groningen; Países BajosFil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; EspañaFil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Döblinger, M.. Technische Universitat Munchen; AlemaniaFil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; ArgentinaFil: Noheda, B.. University of Groningen; Países BajosNature Publishing Group2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/36587Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-3830028-0836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/nature13918info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature13918info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:26Zoai:ri.conicet.gov.ar:11336/36587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:27.179CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
title |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
spellingShingle |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide Farokhipoor, S. Thin Films Manganites Domain Walls Ferromagnetism |
title_short |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
title_full |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
title_fullStr |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
title_full_unstemmed |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
title_sort |
Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide |
dc.creator.none.fl_str_mv |
Farokhipoor, S. Magén, C. Venkatesan, S. Íñiguez, J. Daumont, C.J.M. Rubi, Diego Snoeck, E. Mostovoy, M. De Graaf, C. Müller, A. Döblinger, M. Scheu, C. Noheda, B. |
author |
Farokhipoor, S. |
author_facet |
Farokhipoor, S. Magén, C. Venkatesan, S. Íñiguez, J. Daumont, C.J.M. Rubi, Diego Snoeck, E. Mostovoy, M. De Graaf, C. Müller, A. Döblinger, M. Scheu, C. Noheda, B. |
author_role |
author |
author2 |
Magén, C. Venkatesan, S. Íñiguez, J. Daumont, C.J.M. Rubi, Diego Snoeck, E. Mostovoy, M. De Graaf, C. Müller, A. Döblinger, M. Scheu, C. Noheda, B. |
author2_role |
author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Thin Films Manganites Domain Walls Ferromagnetism |
topic |
Thin Films Manganites Domain Walls Ferromagnetism |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics. Fil: Farokhipoor, S.. University of Groningen; Países Bajos Fil: Magén, C.. Universidad de Zaragoza; España Fil: Venkatesan, S.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina Fil: Íñiguez, J.. Consejo Superior de Investigaciones Científicas; España Fil: Daumont, C.J.M.. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina Fil: Rubi, Diego. University of Groningen; Países Bajos. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina Fil: Snoeck, E.. Universidad de Zaragoza; España Fil: Mostovoy, M.. University of Groningen; Países Bajos Fil: De Graaf, C.. University of Groningen; Países Bajos. Universitat Rovira I Virgili; España. Institució Catalana de Recerca i Estudis Avançats. Barcelona; España Fil: Müller, A.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina Fil: Döblinger, M.. Technische Universitat Munchen; Alemania Fil: Scheu, C.. Technische Universitat Munchen; Alemania. Universite de Tours; Francia. Gerencia de Investigación y Aplicaciones; Argentina. Instituto de Nanociencias y Nanotecnología; Argentina Fil: Noheda, B.. University of Groningen; Países Bajos |
description |
Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/36587 Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-383 0028-0836 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/36587 |
identifier_str_mv |
Farokhipoor, S.; Magén, C.; Venkatesan, S.; Íñiguez, J.; Daumont, C.J.M.; et al.; Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide; Nature Publishing Group; Nature; 515; 11-2014; 379-383 0028-0836 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/nature13918 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/nature13918 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269756025995264 |
score |
13.13397 |