Self-organization of gliadin in aqueous media under physiological digestive pHs
- Autores
- Herrera, Maria Georgina; Veuthey, Tania Vanesa; Dodero, Veronica Isabel
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Here we showed that gliadin, a complex protein system related to celiac disease and other human diseases, is spontaneously self-organized in a very dilute solution at pH 3.0 and 7.0 in water under low ionic strength (10 mM NaCl). The spontaneous self-organization at pH 3.0 increases the apparent solubility due to the formation of finite sized aggregates, such as those formed in the micellization of amphiphilic molecules. Switching the pH from 3.0 to 7.0 lead to a phase separation, however part of the nano-particles are stable remaining disperse in water after centrifugation. Also, beside the pH change led to changes in protein composition and concentration, we determined that the secondary structure of both system is the same. Moreover, Tyrs are slightly more buried and Trps are slightly more exposed to water at pH 7.0 than those at pH 3.0. Electron microscopy techniques showed that both gliadin systems are composed of nanostructures and in the case of pH 7.0 amorphous microaggregates were found, too. Only nanostructures at pH 3.0 showed a micromolar binding affinity to Nile red probe, suggesting the presence of accessible hydrophobic patches which are not more accessible at pH 7.0. All our results suggest that gliadin is able to self-organized at pH 3.0 forming protein micelles type nanostructures (ζ = + 13, 42 ± 1.55 mV), meanwhile at 7.0 the decrease of superficial charge to ζ of +4, 78 ± 0.48 mV led to the formation of stable colloidal nanoparticles, unable to interact with Nile red probe. Our findings may open new perspectives for the understanding of gliadin ability to avoid proteolysis, to reach and cross the intestinal lumen and to trigger different immunological disorders.
Fil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Veuthey, Tania Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina
Fil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universitat Bielefeld; Alemania - Materia
-
Biophysics
Colloids
Electron Microscopy
Gliadin Nanostructures
Gliadin Related Disorders
Nile Red Binding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/54173
Ver los metadatos del registro completo
id |
CONICETDig_4ae4325e8c723a8a709418ba996c084f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/54173 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Self-organization of gliadin in aqueous media under physiological digestive pHsHerrera, Maria GeorginaVeuthey, Tania VanesaDodero, Veronica IsabelBiophysicsColloidsElectron MicroscopyGliadin NanostructuresGliadin Related DisordersNile Red Bindinghttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Here we showed that gliadin, a complex protein system related to celiac disease and other human diseases, is spontaneously self-organized in a very dilute solution at pH 3.0 and 7.0 in water under low ionic strength (10 mM NaCl). The spontaneous self-organization at pH 3.0 increases the apparent solubility due to the formation of finite sized aggregates, such as those formed in the micellization of amphiphilic molecules. Switching the pH from 3.0 to 7.0 lead to a phase separation, however part of the nano-particles are stable remaining disperse in water after centrifugation. Also, beside the pH change led to changes in protein composition and concentration, we determined that the secondary structure of both system is the same. Moreover, Tyrs are slightly more buried and Trps are slightly more exposed to water at pH 7.0 than those at pH 3.0. Electron microscopy techniques showed that both gliadin systems are composed of nanostructures and in the case of pH 7.0 amorphous microaggregates were found, too. Only nanostructures at pH 3.0 showed a micromolar binding affinity to Nile red probe, suggesting the presence of accessible hydrophobic patches which are not more accessible at pH 7.0. All our results suggest that gliadin is able to self-organized at pH 3.0 forming protein micelles type nanostructures (ζ = + 13, 42 ± 1.55 mV), meanwhile at 7.0 the decrease of superficial charge to ζ of +4, 78 ± 0.48 mV led to the formation of stable colloidal nanoparticles, unable to interact with Nile red probe. Our findings may open new perspectives for the understanding of gliadin ability to avoid proteolysis, to reach and cross the intestinal lumen and to trigger different immunological disorders.Fil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Veuthey, Tania Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; ArgentinaFil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universitat Bielefeld; AlemaniaElsevier Science2016-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/54173Herrera, Maria Georgina; Veuthey, Tania Vanesa; Dodero, Veronica Isabel; Self-organization of gliadin in aqueous media under physiological digestive pHs; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 141; 5-2016; 565-5750927-7765CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfb.2016.02.019info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927776516300984info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:44:32Zoai:ri.conicet.gov.ar:11336/54173instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:44:33.251CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
title |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
spellingShingle |
Self-organization of gliadin in aqueous media under physiological digestive pHs Herrera, Maria Georgina Biophysics Colloids Electron Microscopy Gliadin Nanostructures Gliadin Related Disorders Nile Red Binding |
title_short |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
title_full |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
title_fullStr |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
title_full_unstemmed |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
title_sort |
Self-organization of gliadin in aqueous media under physiological digestive pHs |
dc.creator.none.fl_str_mv |
Herrera, Maria Georgina Veuthey, Tania Vanesa Dodero, Veronica Isabel |
author |
Herrera, Maria Georgina |
author_facet |
Herrera, Maria Georgina Veuthey, Tania Vanesa Dodero, Veronica Isabel |
author_role |
author |
author2 |
Veuthey, Tania Vanesa Dodero, Veronica Isabel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Biophysics Colloids Electron Microscopy Gliadin Nanostructures Gliadin Related Disorders Nile Red Binding |
topic |
Biophysics Colloids Electron Microscopy Gliadin Nanostructures Gliadin Related Disorders Nile Red Binding |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Here we showed that gliadin, a complex protein system related to celiac disease and other human diseases, is spontaneously self-organized in a very dilute solution at pH 3.0 and 7.0 in water under low ionic strength (10 mM NaCl). The spontaneous self-organization at pH 3.0 increases the apparent solubility due to the formation of finite sized aggregates, such as those formed in the micellization of amphiphilic molecules. Switching the pH from 3.0 to 7.0 lead to a phase separation, however part of the nano-particles are stable remaining disperse in water after centrifugation. Also, beside the pH change led to changes in protein composition and concentration, we determined that the secondary structure of both system is the same. Moreover, Tyrs are slightly more buried and Trps are slightly more exposed to water at pH 7.0 than those at pH 3.0. Electron microscopy techniques showed that both gliadin systems are composed of nanostructures and in the case of pH 7.0 amorphous microaggregates were found, too. Only nanostructures at pH 3.0 showed a micromolar binding affinity to Nile red probe, suggesting the presence of accessible hydrophobic patches which are not more accessible at pH 7.0. All our results suggest that gliadin is able to self-organized at pH 3.0 forming protein micelles type nanostructures (ζ = + 13, 42 ± 1.55 mV), meanwhile at 7.0 the decrease of superficial charge to ζ of +4, 78 ± 0.48 mV led to the formation of stable colloidal nanoparticles, unable to interact with Nile red probe. Our findings may open new perspectives for the understanding of gliadin ability to avoid proteolysis, to reach and cross the intestinal lumen and to trigger different immunological disorders. Fil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Veuthey, Tania Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina Fil: Dodero, Veronica Isabel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Química del Sur. Universidad Nacional del Sur. Departamento de Química. Instituto de Química del Sur; Argentina. Universitat Bielefeld; Alemania |
description |
Here we showed that gliadin, a complex protein system related to celiac disease and other human diseases, is spontaneously self-organized in a very dilute solution at pH 3.0 and 7.0 in water under low ionic strength (10 mM NaCl). The spontaneous self-organization at pH 3.0 increases the apparent solubility due to the formation of finite sized aggregates, such as those formed in the micellization of amphiphilic molecules. Switching the pH from 3.0 to 7.0 lead to a phase separation, however part of the nano-particles are stable remaining disperse in water after centrifugation. Also, beside the pH change led to changes in protein composition and concentration, we determined that the secondary structure of both system is the same. Moreover, Tyrs are slightly more buried and Trps are slightly more exposed to water at pH 7.0 than those at pH 3.0. Electron microscopy techniques showed that both gliadin systems are composed of nanostructures and in the case of pH 7.0 amorphous microaggregates were found, too. Only nanostructures at pH 3.0 showed a micromolar binding affinity to Nile red probe, suggesting the presence of accessible hydrophobic patches which are not more accessible at pH 7.0. All our results suggest that gliadin is able to self-organized at pH 3.0 forming protein micelles type nanostructures (ζ = + 13, 42 ± 1.55 mV), meanwhile at 7.0 the decrease of superficial charge to ζ of +4, 78 ± 0.48 mV led to the formation of stable colloidal nanoparticles, unable to interact with Nile red probe. Our findings may open new perspectives for the understanding of gliadin ability to avoid proteolysis, to reach and cross the intestinal lumen and to trigger different immunological disorders. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/54173 Herrera, Maria Georgina; Veuthey, Tania Vanesa; Dodero, Veronica Isabel; Self-organization of gliadin in aqueous media under physiological digestive pHs; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 141; 5-2016; 565-575 0927-7765 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/54173 |
identifier_str_mv |
Herrera, Maria Georgina; Veuthey, Tania Vanesa; Dodero, Veronica Isabel; Self-organization of gliadin in aqueous media under physiological digestive pHs; Elsevier Science; Colloids and Surfaces B: Biointerfaces; 141; 5-2016; 565-575 0927-7765 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.colsurfb.2016.02.019 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0927776516300984 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613401699942400 |
score |
13.070432 |