Learning network representations
- Autores
- Moyano, Luis Gregorio
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.
Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina - Materia
-
Embeedings
Redes Complejas
Representaciones
Aprendizaje de Representaciones - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59716
Ver los metadatos del registro completo
| id |
CONICETDig_4aac6263a7d441511c9d828ef9e4ab97 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59716 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Learning network representationsMoyano, Luis GregorioEmbeedingsRedes ComplejasRepresentacionesAprendizaje de Representacioneshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaEDP Sciences2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59716Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-5181951-6355CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-60266-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:42Zoai:ri.conicet.gov.ar:11336/59716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:42.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Learning network representations |
| title |
Learning network representations |
| spellingShingle |
Learning network representations Moyano, Luis Gregorio Embeedings Redes Complejas Representaciones Aprendizaje de Representaciones |
| title_short |
Learning network representations |
| title_full |
Learning network representations |
| title_fullStr |
Learning network representations |
| title_full_unstemmed |
Learning network representations |
| title_sort |
Learning network representations |
| dc.creator.none.fl_str_mv |
Moyano, Luis Gregorio |
| author |
Moyano, Luis Gregorio |
| author_facet |
Moyano, Luis Gregorio |
| author_role |
author |
| dc.subject.none.fl_str_mv |
Embeedings Redes Complejas Representaciones Aprendizaje de Representaciones |
| topic |
Embeedings Redes Complejas Representaciones Aprendizaje de Representaciones |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains. Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina |
| description |
In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59716 Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518 1951-6355 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59716 |
| identifier_str_mv |
Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518 1951-6355 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-60266-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
EDP Sciences |
| publisher.none.fl_str_mv |
EDP Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597142743023616 |
| score |
13.24909 |