Learning network representations

Autores
Moyano, Luis Gregorio
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.
Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
Materia
Embeedings
Redes Complejas
Representaciones
Aprendizaje de Representaciones
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/59716

id CONICETDig_4aac6263a7d441511c9d828ef9e4ab97
oai_identifier_str oai:ri.conicet.gov.ar:11336/59716
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Learning network representationsMoyano, Luis GregorioEmbeedingsRedes ComplejasRepresentacionesAprendizaje de Representacioneshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; ArgentinaEDP Sciences2017-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59716Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-5181951-6355CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-60266-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:34:42Zoai:ri.conicet.gov.ar:11336/59716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:34:42.675CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Learning network representations
title Learning network representations
spellingShingle Learning network representations
Moyano, Luis Gregorio
Embeedings
Redes Complejas
Representaciones
Aprendizaje de Representaciones
title_short Learning network representations
title_full Learning network representations
title_fullStr Learning network representations
title_full_unstemmed Learning network representations
title_sort Learning network representations
dc.creator.none.fl_str_mv Moyano, Luis Gregorio
author Moyano, Luis Gregorio
author_facet Moyano, Luis Gregorio
author_role author
dc.subject.none.fl_str_mv Embeedings
Redes Complejas
Representaciones
Aprendizaje de Representaciones
topic Embeedings
Redes Complejas
Representaciones
Aprendizaje de Representaciones
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.
Fil: Moyano, Luis Gregorio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina
description In this review I present several representation learning methods, and discuss the latest advancements with emphasis in applications to network science. Representation learning is a set of techniques that has the goal of efficiently mapping data structures into convenient latent spaces. Either for dimensionality reduction or for gaining semantic content, this type of feature embeddings has demonstrated to be useful, for example, for node classification or link prediction tasks, among many other relevant applications to networks. I provide a description of the state-of-the-art of network representation learning as well as a detailed account of the connections with other fields of study such as continuous word embeddings and deep learning architectures. Finally, I provide a broad view of several applications of these techniques to networks in various domains.
publishDate 2017
dc.date.none.fl_str_mv 2017-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/59716
Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518
1951-6355
CONICET Digital
CONICET
url http://hdl.handle.net/11336/59716
identifier_str_mv Moyano, Luis Gregorio; Learning network representations; EDP Sciences; European Physical Journal: Special Topics; 226; 3; 2-2017; 499-518
1951-6355
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1140/epjst/e2016-60266-2
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1140%2Fepjst%2Fe2016-60266-2
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1848597142743023616
score 13.24909