Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
- Autores
- Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.
Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
LHC
Graviton Resonance
Composite Models - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/63220
Ver los metadatos del registro completo
id |
CONICETDig_4a68c648d431042a8f09ef60d78e6e7c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/63220 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHCAlvarez, EzequielDa Rold, LeandroMazzitelli, Javier SebastiánSzynkman, Alejandro AndrésLHCGraviton ResonanceComposite Modelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2017-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63220Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-342470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.115012info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.115012info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.08451info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:39Zoai:ri.conicet.gov.ar:11336/63220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:40.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
title |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
spellingShingle |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC Alvarez, Ezequiel LHC Graviton Resonance Composite Models |
title_short |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
title_full |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
title_fullStr |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
title_full_unstemmed |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
title_sort |
Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC |
dc.creator.none.fl_str_mv |
Alvarez, Ezequiel Da Rold, Leandro Mazzitelli, Javier Sebastián Szynkman, Alejandro Andrés |
author |
Alvarez, Ezequiel |
author_facet |
Alvarez, Ezequiel Da Rold, Leandro Mazzitelli, Javier Sebastián Szynkman, Alejandro Andrés |
author_role |
author |
author2 |
Da Rold, Leandro Mazzitelli, Javier Sebastián Szynkman, Alejandro Andrés |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
LHC Graviton Resonance Composite Models |
topic |
LHC Graviton Resonance Composite Models |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis. Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina Fil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-06-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/63220 Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-34 2470-0029 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/63220 |
identifier_str_mv |
Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-34 2470-0029 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.115012 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.115012 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.08451 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613939072073728 |
score |
13.070432 |