Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC

Autores
Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.
Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
LHC
Graviton Resonance
Composite Models
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/63220

id CONICETDig_4a68c648d431042a8f09ef60d78e6e7c
oai_identifier_str oai:ri.conicet.gov.ar:11336/63220
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHCAlvarez, EzequielDa Rold, LeandroMazzitelli, Javier SebastiánSzynkman, Alejandro AndrésLHCGraviton ResonanceComposite Modelshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2017-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/63220Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-342470-0029CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.115012info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.115012info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.08451info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:39Zoai:ri.conicet.gov.ar:11336/63220instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:40.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
title Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
spellingShingle Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
Alvarez, Ezequiel
LHC
Graviton Resonance
Composite Models
title_short Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
title_full Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
title_fullStr Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
title_full_unstemmed Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
title_sort Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC
dc.creator.none.fl_str_mv Alvarez, Ezequiel
Da Rold, Leandro
Mazzitelli, Javier Sebastián
Szynkman, Alejandro Andrés
author Alvarez, Ezequiel
author_facet Alvarez, Ezequiel
Da Rold, Leandro
Mazzitelli, Javier Sebastián
Szynkman, Alejandro Andrés
author_role author
author2 Da Rold, Leandro
Mazzitelli, Javier Sebastián
Szynkman, Alejandro Andrés
author2_role author
author
author
dc.subject.none.fl_str_mv LHC
Graviton Resonance
Composite Models
topic LHC
Graviton Resonance
Composite Models
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.
Fil: Alvarez, Ezequiel. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. International Center for Theoretical Physics; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Da Rold, Leandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Fil: Mazzitelli, Javier Sebastián. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología. Centro Internacional de Estudios Avanzados; Argentina. Universitat Zurich; Suiza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Szynkman, Alejandro Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description We present an effective description of a spin two massive state and a pseudo-Nambu-Goldstone boson Higgs in a two site model. Using this framework, we model the spin-two state as a massive graviton and we study its phenomenology at the LHC. We find that a reduced set of parameters can describe the most important features of this scenario. We address the question of which channel is the most sensitive to detect this graviton. Instead of designing search strategies to estimate the significance in each channel, we compare the ratio of our theoretical predictions to the limits set by available experimental searches for all the decay channels and as a function of the free parameters in the model. We discuss the phenomenological details contained in the outcome of this simple procedure. The results indicate that, for the studied masses between 0.5 and 3 TeV, the channels to look for such a graviton resonance are mainly ZZ, WW, and γγ. This is the case even though top and bottom quarks dominate the branching ratios, since their experimental sensitivity is not as good as the one of the electroweak gauge bosons. We find that as the graviton mass increases, the ZZ and WW channels become more important because of its relatively better enhancement over background, mainly due to fat jet techniques. We determine the region of the parameter space that has already been excluded and the reach for the LHC next stages. We also estimate the size of the loop-induced contributions to the production and decay of the graviton, and show in which region of the parameter space their effects are relevant for our analysis.
publishDate 2017
dc.date.none.fl_str_mv 2017-06-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/63220
Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-34
2470-0029
CONICET Digital
CONICET
url http://hdl.handle.net/11336/63220
identifier_str_mv Alvarez, Ezequiel; Da Rold, Leandro; Mazzitelli, Javier Sebastián; Szynkman, Alejandro Andrés; Graviton resonance phenomenology and a pseudo-Nambu-Goldstone boson Higgs at the LHC; American Physical Society; Physical Review D; 95; 11; 1-6-2017; 1-34
2470-0029
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.95.115012
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.95.115012
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1610.08451
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613939072073728
score 13.070432