Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights
- Autores
- López Estévez, Ana M.; Zhang, Y.; Medel, María; Arriaga, Iker; Sanjurjo, Lucía; Huck Iriart, Cristián; Abrescia, Nicola G. A.; Vicent, María J.; Ouyang, Defang; Torres, Dolores; Alonso, María José
- Año de publicación
- 2024
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The current spotlight of cancer therapeutics is shifting towards personalized medicine with the widespread use of monoclonal antibodies (mAbs). Despite their increasing potential, mAbs have an intrinsic limitation related to their inability to cross cell membranes and reach intracellular targets. Nanotechnology offers promising solutions to overcome this limitation, however, formulation challenges remain. These challenges are the limited loading capacity (often insufficient to achieve clinical dosing), the complex formulation methods, and the insufficient characterization of mAb-loaded nanocarriers. Here, we present a new nanocarrier consisting of hyaluronic acid-based nanoassemblies (HANAs) specifically designed to entrap mAbs with a high efficiency and an outstanding loading capacity (50%, w/w). HANAs composed by an mAb, modified HA and phosphatidylcholine (PC) resulted in sizes of ~ 100 nm and neutral surface charge. Computational modeling identified the principal factors governing the high affinity of mAbs with the amphiphilic HA and PC. HANAs composition and structural configuration were analyzed using the orthogonal techniques cryogenic transmission electron microscopy (cryo-TEM), asymmetrical flow field-flow fractionation (AF4), and small-angle X-ray scattering (SAXS). These techniques provided evidence of the formation of core-shell nanostructures comprising an aqueous core surrounded by a bilayer consisting of phospholipids and amphiphilic HA. In vitro experiments in cancer cell lines and macrophages confirmed HANAs’ low toxicity and ability to transport mAbs to the intracellular space. The reproducibility of this assembling process at industrial-scale batch sizes and the long-term stability was assessed. In conclusion, these results underscore the suitability of HANAs technology to load and deliver biologicals, which holds promise for future clinical translation.
Fil: López Estévez, Ana M.. Universidad de Santiago de Compostela; España
Fil: Zhang, Y.. University Of Macau; China
Fil: Medel, María. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; España. CIBERONC Prince Felipe Research Centre; España
Fil: Arriaga, Iker. Basque Research and Technology Alliance; España
Fil: Sanjurjo, Lucía. Health Research Institute Of Santiago de Compostela; España
Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina. ALBA Synchrotron Light Source; España
Fil: Abrescia, Nicola G. A.. IKERBASQUE; España. Basque Research and Technology Alliance; España
Fil: Vicent, María J.. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; España
Fil: Ouyang, Defang. University Of Macau; China
Fil: Torres, Dolores. Universidad de Santiago de Compostela; España
Fil: Alonso, María José. Universidad de Santiago de Compostela; España - Materia
-
Hyaluronic acid
Monoclonal antibody
Characterization
Delivery - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/268073
Ver los metadatos del registro completo
id |
CONICETDig_4a255499d452ac4c1b3048ac305749c9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/268073 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insightsLópez Estévez, Ana M.Zhang, Y.Medel, MaríaArriaga, IkerSanjurjo, LucíaHuck Iriart, CristiánAbrescia, Nicola G. A.Vicent, María J.Ouyang, DefangTorres, DoloresAlonso, María JoséHyaluronic acidMonoclonal antibodyCharacterizationDeliveryhttps://purl.org/becyt/ford/3.4https://purl.org/becyt/ford/3The current spotlight of cancer therapeutics is shifting towards personalized medicine with the widespread use of monoclonal antibodies (mAbs). Despite their increasing potential, mAbs have an intrinsic limitation related to their inability to cross cell membranes and reach intracellular targets. Nanotechnology offers promising solutions to overcome this limitation, however, formulation challenges remain. These challenges are the limited loading capacity (often insufficient to achieve clinical dosing), the complex formulation methods, and the insufficient characterization of mAb-loaded nanocarriers. Here, we present a new nanocarrier consisting of hyaluronic acid-based nanoassemblies (HANAs) specifically designed to entrap mAbs with a high efficiency and an outstanding loading capacity (50%, w/w). HANAs composed by an mAb, modified HA and phosphatidylcholine (PC) resulted in sizes of ~ 100 nm and neutral surface charge. Computational modeling identified the principal factors governing the high affinity of mAbs with the amphiphilic HA and PC. HANAs composition and structural configuration were analyzed using the orthogonal techniques cryogenic transmission electron microscopy (cryo-TEM), asymmetrical flow field-flow fractionation (AF4), and small-angle X-ray scattering (SAXS). These techniques provided evidence of the formation of core-shell nanostructures comprising an aqueous core surrounded by a bilayer consisting of phospholipids and amphiphilic HA. In vitro experiments in cancer cell lines and macrophages confirmed HANAs’ low toxicity and ability to transport mAbs to the intracellular space. The reproducibility of this assembling process at industrial-scale batch sizes and the long-term stability was assessed. In conclusion, these results underscore the suitability of HANAs technology to load and deliver biologicals, which holds promise for future clinical translation.Fil: López Estévez, Ana M.. Universidad de Santiago de Compostela; EspañaFil: Zhang, Y.. University Of Macau; ChinaFil: Medel, María. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; España. CIBERONC Prince Felipe Research Centre; EspañaFil: Arriaga, Iker. Basque Research and Technology Alliance; EspañaFil: Sanjurjo, Lucía. Health Research Institute Of Santiago de Compostela; EspañaFil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina. ALBA Synchrotron Light Source; EspañaFil: Abrescia, Nicola G. A.. IKERBASQUE; España. Basque Research and Technology Alliance; EspañaFil: Vicent, María J.. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; EspañaFil: Ouyang, Defang. University Of Macau; ChinaFil: Torres, Dolores. Universidad de Santiago de Compostela; EspañaFil: Alonso, María José. Universidad de Santiago de Compostela; EspañaTsinghua Univ Press2024-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/268073López Estévez, Ana M.; Zhang, Y.; Medel, María; Arriaga, Iker; Sanjurjo, Lucía; et al.; Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights; Tsinghua Univ Press; Nano Research; 17; 10; 7-2024; 9111-91251998-0124CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s12274-024-6826-8info:eu-repo/semantics/altIdentifier/doi/10.1007/s12274-024-6826-8info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:27:20Zoai:ri.conicet.gov.ar:11336/268073instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:27:20.766CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
title |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
spellingShingle |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights López Estévez, Ana M. Hyaluronic acid Monoclonal antibody Characterization Delivery |
title_short |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
title_full |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
title_fullStr |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
title_full_unstemmed |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
title_sort |
Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights |
dc.creator.none.fl_str_mv |
López Estévez, Ana M. Zhang, Y. Medel, María Arriaga, Iker Sanjurjo, Lucía Huck Iriart, Cristián Abrescia, Nicola G. A. Vicent, María J. Ouyang, Defang Torres, Dolores Alonso, María José |
author |
López Estévez, Ana M. |
author_facet |
López Estévez, Ana M. Zhang, Y. Medel, María Arriaga, Iker Sanjurjo, Lucía Huck Iriart, Cristián Abrescia, Nicola G. A. Vicent, María J. Ouyang, Defang Torres, Dolores Alonso, María José |
author_role |
author |
author2 |
Zhang, Y. Medel, María Arriaga, Iker Sanjurjo, Lucía Huck Iriart, Cristián Abrescia, Nicola G. A. Vicent, María J. Ouyang, Defang Torres, Dolores Alonso, María José |
author2_role |
author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Hyaluronic acid Monoclonal antibody Characterization Delivery |
topic |
Hyaluronic acid Monoclonal antibody Characterization Delivery |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/3.4 https://purl.org/becyt/ford/3 |
dc.description.none.fl_txt_mv |
The current spotlight of cancer therapeutics is shifting towards personalized medicine with the widespread use of monoclonal antibodies (mAbs). Despite their increasing potential, mAbs have an intrinsic limitation related to their inability to cross cell membranes and reach intracellular targets. Nanotechnology offers promising solutions to overcome this limitation, however, formulation challenges remain. These challenges are the limited loading capacity (often insufficient to achieve clinical dosing), the complex formulation methods, and the insufficient characterization of mAb-loaded nanocarriers. Here, we present a new nanocarrier consisting of hyaluronic acid-based nanoassemblies (HANAs) specifically designed to entrap mAbs with a high efficiency and an outstanding loading capacity (50%, w/w). HANAs composed by an mAb, modified HA and phosphatidylcholine (PC) resulted in sizes of ~ 100 nm and neutral surface charge. Computational modeling identified the principal factors governing the high affinity of mAbs with the amphiphilic HA and PC. HANAs composition and structural configuration were analyzed using the orthogonal techniques cryogenic transmission electron microscopy (cryo-TEM), asymmetrical flow field-flow fractionation (AF4), and small-angle X-ray scattering (SAXS). These techniques provided evidence of the formation of core-shell nanostructures comprising an aqueous core surrounded by a bilayer consisting of phospholipids and amphiphilic HA. In vitro experiments in cancer cell lines and macrophages confirmed HANAs’ low toxicity and ability to transport mAbs to the intracellular space. The reproducibility of this assembling process at industrial-scale batch sizes and the long-term stability was assessed. In conclusion, these results underscore the suitability of HANAs technology to load and deliver biologicals, which holds promise for future clinical translation. Fil: López Estévez, Ana M.. Universidad de Santiago de Compostela; España Fil: Zhang, Y.. University Of Macau; China Fil: Medel, María. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; España. CIBERONC Prince Felipe Research Centre; España Fil: Arriaga, Iker. Basque Research and Technology Alliance; España Fil: Sanjurjo, Lucía. Health Research Institute Of Santiago de Compostela; España Fil: Huck Iriart, Cristián. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Instituto de Tecnologias Emergentes y Ciencias Aplicadas. - Universidad Nacional de San Martin. Instituto de Tecnologias Emergentes y Ciencias Aplicadas.; Argentina. ALBA Synchrotron Light Source; España Fil: Abrescia, Nicola G. A.. IKERBASQUE; España. Basque Research and Technology Alliance; España Fil: Vicent, María J.. Centro de Investigaciones Príncipe Felipe; España. Polymer Therapeutics Laboratory; España Fil: Ouyang, Defang. University Of Macau; China Fil: Torres, Dolores. Universidad de Santiago de Compostela; España Fil: Alonso, María José. Universidad de Santiago de Compostela; España |
description |
The current spotlight of cancer therapeutics is shifting towards personalized medicine with the widespread use of monoclonal antibodies (mAbs). Despite their increasing potential, mAbs have an intrinsic limitation related to their inability to cross cell membranes and reach intracellular targets. Nanotechnology offers promising solutions to overcome this limitation, however, formulation challenges remain. These challenges are the limited loading capacity (often insufficient to achieve clinical dosing), the complex formulation methods, and the insufficient characterization of mAb-loaded nanocarriers. Here, we present a new nanocarrier consisting of hyaluronic acid-based nanoassemblies (HANAs) specifically designed to entrap mAbs with a high efficiency and an outstanding loading capacity (50%, w/w). HANAs composed by an mAb, modified HA and phosphatidylcholine (PC) resulted in sizes of ~ 100 nm and neutral surface charge. Computational modeling identified the principal factors governing the high affinity of mAbs with the amphiphilic HA and PC. HANAs composition and structural configuration were analyzed using the orthogonal techniques cryogenic transmission electron microscopy (cryo-TEM), asymmetrical flow field-flow fractionation (AF4), and small-angle X-ray scattering (SAXS). These techniques provided evidence of the formation of core-shell nanostructures comprising an aqueous core surrounded by a bilayer consisting of phospholipids and amphiphilic HA. In vitro experiments in cancer cell lines and macrophages confirmed HANAs’ low toxicity and ability to transport mAbs to the intracellular space. The reproducibility of this assembling process at industrial-scale batch sizes and the long-term stability was assessed. In conclusion, these results underscore the suitability of HANAs technology to load and deliver biologicals, which holds promise for future clinical translation. |
publishDate |
2024 |
dc.date.none.fl_str_mv |
2024-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/268073 López Estévez, Ana M.; Zhang, Y.; Medel, María; Arriaga, Iker; Sanjurjo, Lucía; et al.; Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights; Tsinghua Univ Press; Nano Research; 17; 10; 7-2024; 9111-9125 1998-0124 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/268073 |
identifier_str_mv |
López Estévez, Ana M.; Zhang, Y.; Medel, María; Arriaga, Iker; Sanjurjo, Lucía; et al.; Engineering hyaluronic acid-based nanoassemblies for monoclonal antibody delivery – design, characterization, and biological insights; Tsinghua Univ Press; Nano Research; 17; 10; 7-2024; 9111-9125 1998-0124 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/10.1007/s12274-024-6826-8 info:eu-repo/semantics/altIdentifier/doi/10.1007/s12274-024-6826-8 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Tsinghua Univ Press |
publisher.none.fl_str_mv |
Tsinghua Univ Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082727698235392 |
score |
13.22299 |