Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
- Autores
- Amore, Paulo; Fernández, Francisco Marcelo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
Pt Symmetry
Anharmonic Oscillators - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/5317
Ver los metadatos del registro completo
id |
CONICETDig_49d4f38906655fff4c4e3169a6ac4225 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/5317 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"Amore, PauloFernández, Francisco MarceloPt SymmetryAnharmonic Oscillatorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)Fil: Amore, Paulo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5317Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-470010031-8949enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/87/4/047001info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/87/04/047001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:29Zoai:ri.conicet.gov.ar:11336/5317instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:29.563CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
title |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
spellingShingle |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" Amore, Paulo Pt Symmetry Anharmonic Oscillators |
title_short |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
title_full |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
title_fullStr |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
title_full_unstemmed |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
title_sort |
Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials" |
dc.creator.none.fl_str_mv |
Amore, Paulo Fernández, Francisco Marcelo |
author |
Amore, Paulo |
author_facet |
Amore, Paulo Fernández, Francisco Marcelo |
author_role |
author |
author2 |
Fernández, Francisco Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Pt Symmetry Anharmonic Oscillators |
topic |
Pt Symmetry Anharmonic Oscillators |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947) Fil: Amore, Paulo. Universidad de Colima; México Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina |
description |
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947) |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/5317 Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-47001 0031-8949 |
url |
http://hdl.handle.net/11336/5317 |
identifier_str_mv |
Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-47001 0031-8949 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/87/4/047001 info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/87/04/047001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083533313933312 |
score |
13.22299 |