Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"

Autores
Amore, Paulo; Fernández, Francisco Marcelo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
Materia
Pt Symmetry
Anharmonic Oscillators
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/5317

id CONICETDig_49d4f38906655fff4c4e3169a6ac4225
oai_identifier_str oai:ri.conicet.gov.ar:11336/5317
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"Amore, PauloFernández, Francisco MarceloPt SymmetryAnharmonic Oscillatorshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)Fil: Amore, Paulo. Universidad de Colima; MéxicoFil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; ArgentinaIOP Publishing2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/5317Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-470010031-8949enginfo:eu-repo/semantics/altIdentifier/doi/info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/87/4/047001info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/87/04/047001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:29Zoai:ri.conicet.gov.ar:11336/5317instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:29.563CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
title Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
spellingShingle Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
Amore, Paulo
Pt Symmetry
Anharmonic Oscillators
title_short Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
title_full Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
title_fullStr Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
title_full_unstemmed Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
title_sort Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"
dc.creator.none.fl_str_mv Amore, Paulo
Fernández, Francisco Marcelo
author Amore, Paulo
author_facet Amore, Paulo
Fernández, Francisco Marcelo
author_role author
author2 Fernández, Francisco Marcelo
author2_role author
dc.subject.none.fl_str_mv Pt Symmetry
Anharmonic Oscillators
topic Pt Symmetry
Anharmonic Oscillators
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)
Fil: Amore, Paulo. Universidad de Colima; México
Fil: Fernández, Francisco Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico la Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina. Universidad Nacional de La Plata; Argentina
description We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the author missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947)
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/5317
Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-47001
0031-8949
url http://hdl.handle.net/11336/5317
identifier_str_mv Amore, Paulo; Fernández, Francisco Marcelo; Comment on "Numerical estimates of the spectrum for anharmonic PT symmetric potentials"; IOP Publishing; Physica Scripta; 87; 1; 3-2013; 47001-47001
0031-8949
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1402-4896/87/4/047001
info:eu-repo/semantics/altIdentifier/doi/10.1088/0031-8949/87/04/047001
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083533313933312
score 13.22299