Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model

Autores
Cugliandolo, Leticia Fernanda; Lozano, Gustavo Sergio; Nessi, Emilio Nicolás; Picco, Marcos Fernando; Tartaglia, Alessandro
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N - 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.
Fil: Cugliandolo, Leticia Fernanda. Université Pierre et Marie Curie; Francia. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Nessi, Emilio Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Picco, Marcos Fernando. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Tartaglia, Alessandro. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Materia
DYNAMICAL PROCESSES
ENERGY LANDSCAPES
ERGODICITY BREAKING
NUMERICAL SIMULATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/96829

id CONICETDig_497a99fc95ad5e157659b6d30e2cbeab
oai_identifier_str oai:ri.conicet.gov.ar:11336/96829
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable modelCugliandolo, Leticia FernandaLozano, Gustavo SergioNessi, Emilio NicolásPicco, Marcos FernandoTartaglia, AlessandroDYNAMICAL PROCESSESENERGY LANDSCAPESERGODICITY BREAKINGNUMERICAL SIMULATIONShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N - 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.Fil: Cugliandolo, Leticia Fernanda. Université Pierre et Marie Curie; Francia. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; FranciaFil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Nessi, Emilio Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Picco, Marcos Fernando. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; FranciaFil: Tartaglia, Alessandro. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; FranciaIOP Publishing2018-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96829Cugliandolo, Leticia Fernanda; Lozano, Gustavo Sergio; Nessi, Emilio Nicolás; Picco, Marcos Fernando; Tartaglia, Alessandro; Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 6; 6-20181742-5468CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/aac2feinfo:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aac2feinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1712.07688info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:05Zoai:ri.conicet.gov.ar:11336/96829instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:05.881CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
title Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
spellingShingle Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
Cugliandolo, Leticia Fernanda
DYNAMICAL PROCESSES
ENERGY LANDSCAPES
ERGODICITY BREAKING
NUMERICAL SIMULATIONS
title_short Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
title_full Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
title_fullStr Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
title_full_unstemmed Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
title_sort Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model
dc.creator.none.fl_str_mv Cugliandolo, Leticia Fernanda
Lozano, Gustavo Sergio
Nessi, Emilio Nicolás
Picco, Marcos Fernando
Tartaglia, Alessandro
author Cugliandolo, Leticia Fernanda
author_facet Cugliandolo, Leticia Fernanda
Lozano, Gustavo Sergio
Nessi, Emilio Nicolás
Picco, Marcos Fernando
Tartaglia, Alessandro
author_role author
author2 Lozano, Gustavo Sergio
Nessi, Emilio Nicolás
Picco, Marcos Fernando
Tartaglia, Alessandro
author2_role author
author
author
author
dc.subject.none.fl_str_mv DYNAMICAL PROCESSES
ENERGY LANDSCAPES
ERGODICITY BREAKING
NUMERICAL SIMULATIONS
topic DYNAMICAL PROCESSES
ENERGY LANDSCAPES
ERGODICITY BREAKING
NUMERICAL SIMULATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N - 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.
Fil: Cugliandolo, Leticia Fernanda. Université Pierre et Marie Curie; Francia. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Lozano, Gustavo Sergio. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Nessi, Emilio Nicolás. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Picco, Marcos Fernando. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
Fil: Tartaglia, Alessandro. Université Pierre et Marie Curie. Laboratoire de Physique Théorique et Hautes Energies; Francia
description We study the Hamiltonian dynamics of the spherical spin model with fully-connected two-body random interactions. In the statistical physics framework, the potential energy is of the so-called p = 2 kind, closely linked to the scalar field theory. Most importantly for our setting, the energy conserving dynamics are equivalent to the ones of the Neumann integrable model. We take initial conditions from the Boltzmann equilibrium measure at a temperature that can be above or below the static phase transition, typical of a disordered (paramagnetic) or of an ordered (disguised ferromagnetic) equilibrium phase. We subsequently evolve the configurations with Newton dynamics dictated by a different Hamiltonian, obtained from an instantaneous global rescaling of the elements in the interaction random matrix. In the limit of infinitely many degrees of freedom, , we identify three dynamical phases depending on the parameters that characterise the initial state and the final Hamiltonian. We next set the analysis of the system with finite number of degrees of freedom in terms of N non-linearly coupled modes. We argue that in the limit the modes decouple at long times. We evaluate the mode temperatures and we relate them to the frequency-dependent effective temperature measured with the fluctuation-dissipation relation in the frequency domain, similarly to what was recently proposed for quantum integrable cases. Finally, we analyse the N - 1 integrals of motion, notably, their scaling with N, and we use them to show that the system is out of equilibrium in all phases, even for parameters that show an apparent Gibbs-Boltzmann behaviour of the global observables. We elaborate on the role played by these constants of motion after the quench and we briefly discuss the possible description of the asymptotic dynamics in terms of a generalised Gibbs ensemble.
publishDate 2018
dc.date.none.fl_str_mv 2018-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/96829
Cugliandolo, Leticia Fernanda; Lozano, Gustavo Sergio; Nessi, Emilio Nicolás; Picco, Marcos Fernando; Tartaglia, Alessandro; Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 6; 6-2018
1742-5468
CONICET Digital
CONICET
url http://hdl.handle.net/11336/96829
identifier_str_mv Cugliandolo, Leticia Fernanda; Lozano, Gustavo Sergio; Nessi, Emilio Nicolás; Picco, Marcos Fernando; Tartaglia, Alessandro; Quenched dynamics of classical isolated systems: The spherical spin model with two-body random interactions or the Neumann integrable model; IOP Publishing; Journal of Statistical Mechanics: Theory and Experiment; 2018; 6; 6-2018
1742-5468
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1742-5468/aac2fe
info:eu-repo/semantics/altIdentifier/doi/10.1088/1742-5468/aac2fe
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1712.07688
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IOP Publishing
publisher.none.fl_str_mv IOP Publishing
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613947058028544
score 13.070432