A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning
- Autores
- Barsce, Juan Cruz; Palombarini, Jorge Andrés; Martínez, Ernesto Carlos
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upperlevelof abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning.
Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Palombarini, Jorge Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
REINFORCEMENT LEARNING
BAYESIAN OPTIMIZATION
AUTONOMOUS SYSTEMS
HYPER-PARAMETERS TUNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/113002
Ver los metadatos del registro completo
id |
CONICETDig_4942662d434527f2f7efdd8296e8f3ab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/113002 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learningBarsce, Juan CruzPalombarini, Jorge AndrésMartínez, Ernesto CarlosREINFORCEMENT LEARNINGBAYESIAN OPTIMIZATIONAUTONOMOUS SYSTEMSHYPER-PARAMETERS TUNINGhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upperlevelof abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning.Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Palombarini, Jorge Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; ArgentinaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaSociedad Argentina de Informática E Investigación Operativa2020-05-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/113002Barsce, Juan Cruz; Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 19; 2; 19-5-2020; 2-271514-6774CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/165info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:38:33Zoai:ri.conicet.gov.ar:11336/113002instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:38:33.582CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
title |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
spellingShingle |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning Barsce, Juan Cruz REINFORCEMENT LEARNING BAYESIAN OPTIMIZATION AUTONOMOUS SYSTEMS HYPER-PARAMETERS TUNING |
title_short |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
title_full |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
title_fullStr |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
title_full_unstemmed |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
title_sort |
A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning |
dc.creator.none.fl_str_mv |
Barsce, Juan Cruz Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author |
Barsce, Juan Cruz |
author_facet |
Barsce, Juan Cruz Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author_role |
author |
author2 |
Palombarini, Jorge Andrés Martínez, Ernesto Carlos |
author2_role |
author author |
dc.subject.none.fl_str_mv |
REINFORCEMENT LEARNING BAYESIAN OPTIMIZATION AUTONOMOUS SYSTEMS HYPER-PARAMETERS TUNING |
topic |
REINFORCEMENT LEARNING BAYESIAN OPTIMIZATION AUTONOMOUS SYSTEMS HYPER-PARAMETERS TUNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upperlevelof abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning. Fil: Barsce, Juan Cruz. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina Fil: Palombarini, Jorge Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; Argentina. Universidad Tecnologica Nacional. Facultad Regional Villa Maria; Argentina Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
description |
Optimization of hyper-parameters in real-world applications of reinforcement learning (RL) is a key issue, because their settings determine how fast the agent will learn its policy by interacting with its environment due to the information content of data gathered. In this work, an approach that uses Bayesian optimization to perform an autonomous two-tier optimization of both representation decisions and algorithm hyper-parameters is proposed: first, categorical / structural RL hyper-parameters are taken as binary variables and optimized with an acquisition function tailored for such type of variables. Then, at a lower level of abstraction, solution-level hyper-parameters are optimized by resorting to the expected improvement acquisition function, whereas the categorical hyper-parameters found in the optimization at the upperlevelof abstraction are fixed. This two-tier approach is validated with a tabular and neural network setting of the value function, in a classic simulated control task. Results obtained are promising and open the way for more user-independent applications of reinforcement learning. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/113002 Barsce, Juan Cruz; Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 19; 2; 19-5-2020; 2-27 1514-6774 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/113002 |
identifier_str_mv |
Barsce, Juan Cruz; Palombarini, Jorge Andrés; Martínez, Ernesto Carlos; A hierarchical two-tier approach to hyper-parameter optimization in reinforcement learning; Sociedad Argentina de Informática E Investigación Operativa; SADIO Electronic Journal of Informatic and Operation Research; 19; 2; 19-5-2020; 2-27 1514-6774 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://publicaciones.sadio.org.ar/index.php/EJS/article/view/165 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Sociedad Argentina de Informática E Investigación Operativa |
publisher.none.fl_str_mv |
Sociedad Argentina de Informática E Investigación Operativa |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083504037691392 |
score |
12.891075 |