Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant

Autores
Rodriguez, Maria Analia; Montagna, Jorge Marcelo; Vecchietti, Aldo; Corsano, Gabriela
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A Generalized Disjunctive Programming (GDP) model for the optimal multi-period production planning and stock management is proposed in this work. The formulation is applied to a polyurethane foam manufacturing plant that comprises three stages: a first step that produces pieces with certain characteristics, a second process that involves the location of these pieces in a limited area and a third stage where pieces are stored in dedicated spaces. This article shows the GDP capabilities to provide a qualitative framework for representing the problem issues and their connections in a natural way, especially in a context where decisions integration is required. Due to the multi-period nature of the planning problem, a rolling horizon approach is suitable for solving it in reasonable computing time. It serves as a tool for analyzing the trade-offs among the different costs. Through the examples, the capabilities of the formulation and the proposed resolution method are highlighted.
Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Materia
Generalized Disjunctive Programming
Mattress Industry
Optimization
Production Planning
Rolling Horizon
Stock
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/38489

id CONICETDig_4915154a7110d6600ca5dda811ba515b
oai_identifier_str oai:ri.conicet.gov.ar:11336/38489
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plantRodriguez, Maria AnaliaMontagna, Jorge MarceloVecchietti, AldoCorsano, GabrielaGeneralized Disjunctive ProgrammingMattress IndustryOptimizationProduction PlanningRolling HorizonStockhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A Generalized Disjunctive Programming (GDP) model for the optimal multi-period production planning and stock management is proposed in this work. The formulation is applied to a polyurethane foam manufacturing plant that comprises three stages: a first step that produces pieces with certain characteristics, a second process that involves the location of these pieces in a limited area and a third stage where pieces are stored in dedicated spaces. This article shows the GDP capabilities to provide a qualitative framework for representing the problem issues and their connections in a natural way, especially in a context where decisions integration is required. Due to the multi-period nature of the planning problem, a rolling horizon approach is suitable for solving it in reasonable computing time. It serves as a tool for analyzing the trade-offs among the different costs. Through the examples, the capabilities of the formulation and the proposed resolution method are highlighted.Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaPergamon-Elsevier Science Ltd2017-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/38489Rodriguez, Maria Analia; Montagna, Jorge Marcelo; Vecchietti, Aldo; Corsano, Gabriela; Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 103; 8-2017; 69-800098-1354CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2017.03.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135417301187info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:18Zoai:ri.conicet.gov.ar:11336/38489instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:18.814CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
title Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
spellingShingle Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
Rodriguez, Maria Analia
Generalized Disjunctive Programming
Mattress Industry
Optimization
Production Planning
Rolling Horizon
Stock
title_short Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
title_full Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
title_fullStr Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
title_full_unstemmed Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
title_sort Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant
dc.creator.none.fl_str_mv Rodriguez, Maria Analia
Montagna, Jorge Marcelo
Vecchietti, Aldo
Corsano, Gabriela
author Rodriguez, Maria Analia
author_facet Rodriguez, Maria Analia
Montagna, Jorge Marcelo
Vecchietti, Aldo
Corsano, Gabriela
author_role author
author2 Montagna, Jorge Marcelo
Vecchietti, Aldo
Corsano, Gabriela
author2_role author
author
author
dc.subject.none.fl_str_mv Generalized Disjunctive Programming
Mattress Industry
Optimization
Production Planning
Rolling Horizon
Stock
topic Generalized Disjunctive Programming
Mattress Industry
Optimization
Production Planning
Rolling Horizon
Stock
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A Generalized Disjunctive Programming (GDP) model for the optimal multi-period production planning and stock management is proposed in this work. The formulation is applied to a polyurethane foam manufacturing plant that comprises three stages: a first step that produces pieces with certain characteristics, a second process that involves the location of these pieces in a limited area and a third stage where pieces are stored in dedicated spaces. This article shows the GDP capabilities to provide a qualitative framework for representing the problem issues and their connections in a natural way, especially in a context where decisions integration is required. Due to the multi-period nature of the planning problem, a rolling horizon approach is suitable for solving it in reasonable computing time. It serves as a tool for analyzing the trade-offs among the different costs. Through the examples, the capabilities of the formulation and the proposed resolution method are highlighted.
Fil: Rodriguez, Maria Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Montagna, Jorge Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Vecchietti, Aldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Corsano, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
description A Generalized Disjunctive Programming (GDP) model for the optimal multi-period production planning and stock management is proposed in this work. The formulation is applied to a polyurethane foam manufacturing plant that comprises three stages: a first step that produces pieces with certain characteristics, a second process that involves the location of these pieces in a limited area and a third stage where pieces are stored in dedicated spaces. This article shows the GDP capabilities to provide a qualitative framework for representing the problem issues and their connections in a natural way, especially in a context where decisions integration is required. Due to the multi-period nature of the planning problem, a rolling horizon approach is suitable for solving it in reasonable computing time. It serves as a tool for analyzing the trade-offs among the different costs. Through the examples, the capabilities of the formulation and the proposed resolution method are highlighted.
publishDate 2017
dc.date.none.fl_str_mv 2017-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/38489
Rodriguez, Maria Analia; Montagna, Jorge Marcelo; Vecchietti, Aldo; Corsano, Gabriela; Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 103; 8-2017; 69-80
0098-1354
CONICET Digital
CONICET
url http://hdl.handle.net/11336/38489
identifier_str_mv Rodriguez, Maria Analia; Montagna, Jorge Marcelo; Vecchietti, Aldo; Corsano, Gabriela; Generalized disjunctive programming model for the multi-period production planning optimization: An application in a polyurethane foam manufacturing plant; Pergamon-Elsevier Science Ltd; Computers and Chemical Engineering; 103; 8-2017; 69-80
0098-1354
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.compchemeng.2017.03.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0098135417301187
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269215472484352
score 13.13397