Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays

Autores
Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.
Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Chávez, Danilo. No especifíca;
Fil: Wagner, Bernardo. Leibniz University Hannover; Alemania
Materia
Biped robot
bilateral teleoperation
time delay
walking robot
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/227353

id CONICETDig_46eb156631241b695e08aad26921c73b
oai_identifier_str oai:ri.conicet.gov.ar:11336/227353
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying DelaysMoya, VivianaSlawiñski, EmanuelMut, Vicente AntonioChávez, DaniloWagner, BernardoBiped robotbilateral teleoperationtime delaywalking robothttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Chávez, Danilo. No especifíca;Fil: Wagner, Bernardo. Leibniz University Hannover; AlemaniaHindawi Publishing Corporation2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227353Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-161687-96001687-9619CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2023/3197743info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:40Zoai:ri.conicet.gov.ar:11336/227353instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:41.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
title Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
spellingShingle Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
Moya, Viviana
Biped robot
bilateral teleoperation
time delay
walking robot
title_short Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
title_full Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
title_fullStr Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
title_full_unstemmed Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
title_sort Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
dc.creator.none.fl_str_mv Moya, Viviana
Slawiñski, Emanuel
Mut, Vicente Antonio
Chávez, Danilo
Wagner, Bernardo
author Moya, Viviana
author_facet Moya, Viviana
Slawiñski, Emanuel
Mut, Vicente Antonio
Chávez, Danilo
Wagner, Bernardo
author_role author
author2 Slawiñski, Emanuel
Mut, Vicente Antonio
Chávez, Danilo
Wagner, Bernardo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Biped robot
bilateral teleoperation
time delay
walking robot
topic Biped robot
bilateral teleoperation
time delay
walking robot
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.
Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Chávez, Danilo. No especifíca;
Fil: Wagner, Bernardo. Leibniz University Hannover; Alemania
description This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/227353
Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-16
1687-9600
1687-9619
CONICET Digital
CONICET
url http://hdl.handle.net/11336/227353
identifier_str_mv Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-16
1687-9600
1687-9619
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1155/2023/3197743
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Hindawi Publishing Corporation
publisher.none.fl_str_mv Hindawi Publishing Corporation
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613676792807424
score 13.070432