Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays
- Autores
- Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.
Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Chávez, Danilo. No especifíca;
Fil: Wagner, Bernardo. Leibniz University Hannover; Alemania - Materia
-
Biped robot
bilateral teleoperation
time delay
walking robot - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/227353
Ver los metadatos del registro completo
id |
CONICETDig_46eb156631241b695e08aad26921c73b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/227353 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying DelaysMoya, VivianaSlawiñski, EmanuelMut, Vicente AntonioChávez, DaniloWagner, BernardoBiped robotbilateral teleoperationtime delaywalking robothttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown.Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Chávez, Danilo. No especifíca;Fil: Wagner, Bernardo. Leibniz University Hannover; AlemaniaHindawi Publishing Corporation2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/227353Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-161687-96001687-9619CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1155/2023/3197743info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:40Zoai:ri.conicet.gov.ar:11336/227353instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:41.108CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
title |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
spellingShingle |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays Moya, Viviana Biped robot bilateral teleoperation time delay walking robot |
title_short |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
title_full |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
title_fullStr |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
title_full_unstemmed |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
title_sort |
Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays |
dc.creator.none.fl_str_mv |
Moya, Viviana Slawiñski, Emanuel Mut, Vicente Antonio Chávez, Danilo Wagner, Bernardo |
author |
Moya, Viviana |
author_facet |
Moya, Viviana Slawiñski, Emanuel Mut, Vicente Antonio Chávez, Danilo Wagner, Bernardo |
author_role |
author |
author2 |
Slawiñski, Emanuel Mut, Vicente Antonio Chávez, Danilo Wagner, Bernardo |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Biped robot bilateral teleoperation time delay walking robot |
topic |
Biped robot bilateral teleoperation time delay walking robot |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown. Fil: Moya, Viviana. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Slawiñski, Emanuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Mut, Vicente Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina Fil: Chávez, Danilo. No especifíca; Fil: Wagner, Bernardo. Leibniz University Hannover; Alemania |
description |
This document proposes a control scheme applied to delayed bilateral teleoperation of the forward and turn speed of a biped robot against asymmetric and time-varying delays. This biped robot is modeled as a hybrid dynamic system because it behaves as a continuous system when the leg moves forward and discrete when the foot touches the ground generating an impulsive response. It is proposed to vary online the damping according to the time delay present in the communication channel, and the walking cycle time using an optimization criterion, to decrease the teleoperation system errors. To accomplish this, a three-phase cascade calibration process is used, and their benefits are evidenced in a comparative simulation study. The first phase is an offline calibration of the inverse dynamic compensation and also the parameters of the bilateral controller. The second phase guarantees the bilateral coordination of the delayed teleoperation system, using the Lyapunov-Krasovskii stability theory, by changing the leader damping and the equivalent follower damping together. The third phase assures a stable walk of the hybrid dynamics by controlling the walking cycle time and the real damping to move the eigenvalues of the Poincaré map, numerically computed, to stable limit cycles and link this result with an equivalent continuous system to join both phases. Additionally, a fictitious force was implemented to detect and avoid possible collisions with obstacles. Finally, an intercontinental teleoperation experiment of an NAO robot via the Internet including force and visual feedback is shown. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/227353 Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-16 1687-9600 1687-9619 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/227353 |
identifier_str_mv |
Moya, Viviana; Slawiñski, Emanuel; Mut, Vicente Antonio; Chávez, Danilo; Wagner, Bernardo; Stable Bilateral Teleoperation Control Method for Biped Robots with Time-Varying Delays; Hindawi Publishing Corporation; Journal of Robotics; 2023; 2-2023; 1-16 1687-9600 1687-9619 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1155/2023/3197743 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
publisher.none.fl_str_mv |
Hindawi Publishing Corporation |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613676792807424 |
score |
13.070432 |