Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)

Autores
Leon, Evelina Jesica; Peltzer, Paola; Lorenzón, Rodrigo Ezequiel; Lajmanovich, Rafael Carlos; Beltzer, Adolfo Hector
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El aumento de los sonidos de origen antropogénico, como los ruidos del tráfico, contribuyen a la contaminación acústica, que produce un efecto nocivo en el canto de los vertebrados. Comparamos la vocalización de machos de Scinax nasicus (Cope, 1862) en ambientes naturales (como referencia o control, Sitio A) y sitios afectados por ruidos de tráfico (Sitio B). La estructura de la vocalización se registró y amplificó en sonogramas (software Raven Pro 1.5). Se midieron siete variables de su vocalización: duración (s), número de notas, número de pulsos por nota, frecuencia máxima, mínima y dominante (kHz) y amplitud (dB). Además, en cada sitio se midió el ruido de fondo (frecuencia fundamental, la F0 y amplitud, dB). La amplitud del ruido de fondo alcanzó valores más altos (68.02 dB) en el Sitio B, en el Sitio A fue menor (34.81 dB). Por lo tanto, el F0 en el Sitio A fue de 6.28 kHz y en el Sitio B fue de 4.15 kHz. Las vocalizaciones de esta rana en el ambiente con ruido de tráfico (Sitio B) se caracterizaron por menor duración (s) y número de pulsos por nota, mayor amplitud (dB) y frecuencias máximas y dominantes más altas (kHz), baja frecuencia mínima en comparación con el ambiente control (Sitio A). Nuestro estudio resaltó que los machos de S. nasicus cambian su estructura vocal en estanques de ruido de tráfico, principalmente por “ajuste” vocal de sus frecuencias y amplitud para contrarrestar el efecto de enmascaramiento del ruido. Finalmente, el monitoreo acústico de anuros en ambientes ruidosos debe considerar el solapamiento espacial, temporal y espectral entre ruido acústico específico y el comportamiento de la especie.
Increased anthropogenic-made sounds such as traffic noises contribute to acoustic pollution, which produces deleterious effect on songvertebrates. We compared the advertisement call of Scinax nasicus (Cope, 1862) males in natural (as a reference or control, Site A) and Sites affected by traffic noises (Site B). Call structure was recorded and it was amplified in sonograms (software Raven Pro 1.5). Seven variables were measured on its advertisement call: duration (s), number of notes, number of pulses per note, maximum and minimum frequency (kHz), dominant frequency (kHz) and amplitude (dB). In addition, at each Site the background noise (the fundamental frequency, F0 and amplitude, dB) was measured. The amplitude of background noise reached higher values (68.02 dB) in Site B, while in Site A was lower (34.81 dB). Thus, the F0 in Site A was 6.28 kHz and in Site B it was 4.15 kHz. Frog call in noisy environment (Site B) were characterized by lesser duration (s) and number of pulses per note, higher maximum and dominant frequencies (kHz), lower minimum frequencies, and amplitude (dB) when compared with control environment (Site A). Our study highlights, that S. nasicus males shift their vocal structure in traffic noisy ponds, mainly by vocal “adjust” of their frequencies and amplitude to counteract masking effect. Finally, acoustic monitoring of anurans on noise environments should be considering the spatial, temporal and spectral overlap between noise and species-specific acoustic behaviour.
Fil: Leon, Evelina Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Fil: Peltzer, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; Argentina
Fil: Lorenzón, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Fil: Lajmanovich, Rafael Carlos. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Beltzer, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Materia
AMPHIBIANS
HYLIDAE
VOCAL ADJUST
VOCALIZATION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/135975

id CONICETDig_466c0d4b4b658520a87e9e335b6cbaf7
oai_identifier_str oai:ri.conicet.gov.ar:11336/135975
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)Efecto del ruído del tráfico en la vocalización de machos de Scinax nasicus (Amphibia, Anura)Leon, Evelina JesicaPeltzer, PaolaLorenzón, Rodrigo EzequielLajmanovich, Rafael CarlosBeltzer, Adolfo HectorAMPHIBIANSHYLIDAEVOCAL ADJUSTVOCALIZATIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1El aumento de los sonidos de origen antropogénico, como los ruidos del tráfico, contribuyen a la contaminación acústica, que produce un efecto nocivo en el canto de los vertebrados. Comparamos la vocalización de machos de Scinax nasicus (Cope, 1862) en ambientes naturales (como referencia o control, Sitio A) y sitios afectados por ruidos de tráfico (Sitio B). La estructura de la vocalización se registró y amplificó en sonogramas (software Raven Pro 1.5). Se midieron siete variables de su vocalización: duración (s), número de notas, número de pulsos por nota, frecuencia máxima, mínima y dominante (kHz) y amplitud (dB). Además, en cada sitio se midió el ruido de fondo (frecuencia fundamental, la F0 y amplitud, dB). La amplitud del ruido de fondo alcanzó valores más altos (68.02 dB) en el Sitio B, en el Sitio A fue menor (34.81 dB). Por lo tanto, el F0 en el Sitio A fue de 6.28 kHz y en el Sitio B fue de 4.15 kHz. Las vocalizaciones de esta rana en el ambiente con ruido de tráfico (Sitio B) se caracterizaron por menor duración (s) y número de pulsos por nota, mayor amplitud (dB) y frecuencias máximas y dominantes más altas (kHz), baja frecuencia mínima en comparación con el ambiente control (Sitio A). Nuestro estudio resaltó que los machos de S. nasicus cambian su estructura vocal en estanques de ruido de tráfico, principalmente por “ajuste” vocal de sus frecuencias y amplitud para contrarrestar el efecto de enmascaramiento del ruido. Finalmente, el monitoreo acústico de anuros en ambientes ruidosos debe considerar el solapamiento espacial, temporal y espectral entre ruido acústico específico y el comportamiento de la especie.Increased anthropogenic-made sounds such as traffic noises contribute to acoustic pollution, which produces deleterious effect on songvertebrates. We compared the advertisement call of Scinax nasicus (Cope, 1862) males in natural (as a reference or control, Site A) and Sites affected by traffic noises (Site B). Call structure was recorded and it was amplified in sonograms (software Raven Pro 1.5). Seven variables were measured on its advertisement call: duration (s), number of notes, number of pulses per note, maximum and minimum frequency (kHz), dominant frequency (kHz) and amplitude (dB). In addition, at each Site the background noise (the fundamental frequency, F0 and amplitude, dB) was measured. The amplitude of background noise reached higher values (68.02 dB) in Site B, while in Site A was lower (34.81 dB). Thus, the F0 in Site A was 6.28 kHz and in Site B it was 4.15 kHz. Frog call in noisy environment (Site B) were characterized by lesser duration (s) and number of pulses per note, higher maximum and dominant frequencies (kHz), lower minimum frequencies, and amplitude (dB) when compared with control environment (Site A). Our study highlights, that S. nasicus males shift their vocal structure in traffic noisy ponds, mainly by vocal “adjust” of their frequencies and amplitude to counteract masking effect. Finally, acoustic monitoring of anurans on noise environments should be considering the spatial, temporal and spectral overlap between noise and species-specific acoustic behaviour.Fil: Leon, Evelina Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Peltzer, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; ArgentinaFil: Lorenzón, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFil: Lajmanovich, Rafael Carlos. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; ArgentinaFil: Beltzer, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; ArgentinaFundaçao Zoobotanica Rio Grande Sul2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135975Leon, Evelina Jesica; Peltzer, Paola; Lorenzón, Rodrigo Ezequiel; Lajmanovich, Rafael Carlos; Beltzer, Adolfo Hector; Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura); Fundaçao Zoobotanica Rio Grande Sul; Iheringia. Série Zoologia; 109; 7-2019; 1-80073-47211678-4766CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0073-47212019000100207&lng=en&tlng=eninfo:eu-repo/semantics/altIdentifier/doi/10.1590/1678-4766e2019007info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:32:58Zoai:ri.conicet.gov.ar:11336/135975instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:32:58.999CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
Efecto del ruído del tráfico en la vocalización de machos de Scinax nasicus (Amphibia, Anura)
title Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
spellingShingle Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
Leon, Evelina Jesica
AMPHIBIANS
HYLIDAE
VOCAL ADJUST
VOCALIZATION
title_short Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
title_full Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
title_fullStr Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
title_full_unstemmed Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
title_sort Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura)
dc.creator.none.fl_str_mv Leon, Evelina Jesica
Peltzer, Paola
Lorenzón, Rodrigo Ezequiel
Lajmanovich, Rafael Carlos
Beltzer, Adolfo Hector
author Leon, Evelina Jesica
author_facet Leon, Evelina Jesica
Peltzer, Paola
Lorenzón, Rodrigo Ezequiel
Lajmanovich, Rafael Carlos
Beltzer, Adolfo Hector
author_role author
author2 Peltzer, Paola
Lorenzón, Rodrigo Ezequiel
Lajmanovich, Rafael Carlos
Beltzer, Adolfo Hector
author2_role author
author
author
author
dc.subject.none.fl_str_mv AMPHIBIANS
HYLIDAE
VOCAL ADJUST
VOCALIZATION
topic AMPHIBIANS
HYLIDAE
VOCAL ADJUST
VOCALIZATION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv El aumento de los sonidos de origen antropogénico, como los ruidos del tráfico, contribuyen a la contaminación acústica, que produce un efecto nocivo en el canto de los vertebrados. Comparamos la vocalización de machos de Scinax nasicus (Cope, 1862) en ambientes naturales (como referencia o control, Sitio A) y sitios afectados por ruidos de tráfico (Sitio B). La estructura de la vocalización se registró y amplificó en sonogramas (software Raven Pro 1.5). Se midieron siete variables de su vocalización: duración (s), número de notas, número de pulsos por nota, frecuencia máxima, mínima y dominante (kHz) y amplitud (dB). Además, en cada sitio se midió el ruido de fondo (frecuencia fundamental, la F0 y amplitud, dB). La amplitud del ruido de fondo alcanzó valores más altos (68.02 dB) en el Sitio B, en el Sitio A fue menor (34.81 dB). Por lo tanto, el F0 en el Sitio A fue de 6.28 kHz y en el Sitio B fue de 4.15 kHz. Las vocalizaciones de esta rana en el ambiente con ruido de tráfico (Sitio B) se caracterizaron por menor duración (s) y número de pulsos por nota, mayor amplitud (dB) y frecuencias máximas y dominantes más altas (kHz), baja frecuencia mínima en comparación con el ambiente control (Sitio A). Nuestro estudio resaltó que los machos de S. nasicus cambian su estructura vocal en estanques de ruido de tráfico, principalmente por “ajuste” vocal de sus frecuencias y amplitud para contrarrestar el efecto de enmascaramiento del ruido. Finalmente, el monitoreo acústico de anuros en ambientes ruidosos debe considerar el solapamiento espacial, temporal y espectral entre ruido acústico específico y el comportamiento de la especie.
Increased anthropogenic-made sounds such as traffic noises contribute to acoustic pollution, which produces deleterious effect on songvertebrates. We compared the advertisement call of Scinax nasicus (Cope, 1862) males in natural (as a reference or control, Site A) and Sites affected by traffic noises (Site B). Call structure was recorded and it was amplified in sonograms (software Raven Pro 1.5). Seven variables were measured on its advertisement call: duration (s), number of notes, number of pulses per note, maximum and minimum frequency (kHz), dominant frequency (kHz) and amplitude (dB). In addition, at each Site the background noise (the fundamental frequency, F0 and amplitude, dB) was measured. The amplitude of background noise reached higher values (68.02 dB) in Site B, while in Site A was lower (34.81 dB). Thus, the F0 in Site A was 6.28 kHz and in Site B it was 4.15 kHz. Frog call in noisy environment (Site B) were characterized by lesser duration (s) and number of pulses per note, higher maximum and dominant frequencies (kHz), lower minimum frequencies, and amplitude (dB) when compared with control environment (Site A). Our study highlights, that S. nasicus males shift their vocal structure in traffic noisy ponds, mainly by vocal “adjust” of their frequencies and amplitude to counteract masking effect. Finally, acoustic monitoring of anurans on noise environments should be considering the spatial, temporal and spectral overlap between noise and species-specific acoustic behaviour.
Fil: Leon, Evelina Jesica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Fil: Peltzer, Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; Argentina
Fil: Lorenzón, Rodrigo Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
Fil: Lajmanovich, Rafael Carlos. Universidad Nacional del Litoral. Facultad de Bioquímica y Ciencias Biológicas. Laboratorio de Saneamiento Ambiental. Cátedra de Ecotoxicología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina
Fil: Beltzer, Adolfo Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto Nacional de Limnología. Universidad Nacional del Litoral. Instituto Nacional de Limnología; Argentina
description El aumento de los sonidos de origen antropogénico, como los ruidos del tráfico, contribuyen a la contaminación acústica, que produce un efecto nocivo en el canto de los vertebrados. Comparamos la vocalización de machos de Scinax nasicus (Cope, 1862) en ambientes naturales (como referencia o control, Sitio A) y sitios afectados por ruidos de tráfico (Sitio B). La estructura de la vocalización se registró y amplificó en sonogramas (software Raven Pro 1.5). Se midieron siete variables de su vocalización: duración (s), número de notas, número de pulsos por nota, frecuencia máxima, mínima y dominante (kHz) y amplitud (dB). Además, en cada sitio se midió el ruido de fondo (frecuencia fundamental, la F0 y amplitud, dB). La amplitud del ruido de fondo alcanzó valores más altos (68.02 dB) en el Sitio B, en el Sitio A fue menor (34.81 dB). Por lo tanto, el F0 en el Sitio A fue de 6.28 kHz y en el Sitio B fue de 4.15 kHz. Las vocalizaciones de esta rana en el ambiente con ruido de tráfico (Sitio B) se caracterizaron por menor duración (s) y número de pulsos por nota, mayor amplitud (dB) y frecuencias máximas y dominantes más altas (kHz), baja frecuencia mínima en comparación con el ambiente control (Sitio A). Nuestro estudio resaltó que los machos de S. nasicus cambian su estructura vocal en estanques de ruido de tráfico, principalmente por “ajuste” vocal de sus frecuencias y amplitud para contrarrestar el efecto de enmascaramiento del ruido. Finalmente, el monitoreo acústico de anuros en ambientes ruidosos debe considerar el solapamiento espacial, temporal y espectral entre ruido acústico específico y el comportamiento de la especie.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/135975
Leon, Evelina Jesica; Peltzer, Paola; Lorenzón, Rodrigo Ezequiel; Lajmanovich, Rafael Carlos; Beltzer, Adolfo Hector; Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura); Fundaçao Zoobotanica Rio Grande Sul; Iheringia. Série Zoologia; 109; 7-2019; 1-8
0073-4721
1678-4766
CONICET Digital
CONICET
url http://hdl.handle.net/11336/135975
identifier_str_mv Leon, Evelina Jesica; Peltzer, Paola; Lorenzón, Rodrigo Ezequiel; Lajmanovich, Rafael Carlos; Beltzer, Adolfo Hector; Effect of traffic noise on Scinax nasicus advertisement call (Amphibia, Anura); Fundaçao Zoobotanica Rio Grande Sul; Iheringia. Série Zoologia; 109; 7-2019; 1-8
0073-4721
1678-4766
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0073-47212019000100207&lng=en&tlng=en
info:eu-repo/semantics/altIdentifier/doi/10.1590/1678-4766e2019007
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Fundaçao Zoobotanica Rio Grande Sul
publisher.none.fl_str_mv Fundaçao Zoobotanica Rio Grande Sul
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614344385495040
score 13.070432