Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas

Autores
Sanci, Romina; Panarello, Hector Osvaldo
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Isotopic compositions of CH4 and CO2 surface and subsurface gases and groundwater from an urban solid waste disposal site from Gualeguaychú city (Argentina) were measured to detect origin, depth distribution, migration lateral, CH4 oxidation, and dissolution in groundwater. The highest CH4 concentrations (60–88 %) with δ13C-CH4 (between −60 and −45 ‰) and δ2H-CH4 (between −350 and −260 ‰) were attributed to CH4 originated by microbial sources, v. gr. acetate fermentation. The δ13C-CO2 related to this CH4 (between −15 and −5.9 ‰) were compatible with this process. Also, the increase of DIC associated to an increase in δ13C-DIC values (−12.4, −6.4, −5.8, −1.5, +0.1 and +4 ‰) indicated the transport of dissolved gases (from methanogenesis) in the groundwater flow system. High excess deuterium in 3 piezometers suggests that there were hydrogen isotope exchange between CH4 and water too. Evidences for CH4 oxidation were decrease in CH4 concentrations, shift in C and H isotope ratios of CH4 to more enriched in the remaining CH4 (in both, δ13C-CH4 >−50 ‰ and δ2H >−260 ‰) and depletion in 13C of the associated CO2 (<−20 ‰). Since surface CH4 and CO2 concentrations over the covering layer were very low, and the major CH4 concentrations were found between 60m and 90 cm depth, it is very probable USW has been compacted with low permeability materials (e.g., clay) avoiding large emissions to the atmosphere and creating horizontal barriers within the waste that enable lateral gas migration. Horizontally, it can be seen that these gases migrated outside the disposal site following the topography and that CH4 disappeared leading to anomalous concentrations of CO2 whose values are greater than those produced by normal soil respiration. The isotopic value (δ13C) of this CO2 was also different from that of normal soil respiration (~−25 ‰) and reflected effects that generated isotopic depletion by diffusion (~−25 to −32 ‰). The analysis of C isotopes as the main tracer, together H isotopes, has allowed the effective detection of the origin and those secondary processes.
Fil: Sanci, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
Fil: Panarello, Hector Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
Materia
Methane
Carbon Dioxide
Carbon Isotopes
Dissolved Carbon
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/44635

id CONICETDig_45c5bf53a6543b21bd62fbf8f58f475d
oai_identifier_str oai:ri.conicet.gov.ar:11336/44635
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areasSanci, RominaPanarello, Hector OsvaldoMethaneCarbon DioxideCarbon IsotopesDissolved Carbonhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Isotopic compositions of CH4 and CO2 surface and subsurface gases and groundwater from an urban solid waste disposal site from Gualeguaychú city (Argentina) were measured to detect origin, depth distribution, migration lateral, CH4 oxidation, and dissolution in groundwater. The highest CH4 concentrations (60–88 %) with δ13C-CH4 (between −60 and −45 ‰) and δ2H-CH4 (between −350 and −260 ‰) were attributed to CH4 originated by microbial sources, v. gr. acetate fermentation. The δ13C-CO2 related to this CH4 (between −15 and −5.9 ‰) were compatible with this process. Also, the increase of DIC associated to an increase in δ13C-DIC values (−12.4, −6.4, −5.8, −1.5, +0.1 and +4 ‰) indicated the transport of dissolved gases (from methanogenesis) in the groundwater flow system. High excess deuterium in 3 piezometers suggests that there were hydrogen isotope exchange between CH4 and water too. Evidences for CH4 oxidation were decrease in CH4 concentrations, shift in C and H isotope ratios of CH4 to more enriched in the remaining CH4 (in both, δ13C-CH4 >−50 ‰ and δ2H >−260 ‰) and depletion in 13C of the associated CO2 (<−20 ‰). Since surface CH4 and CO2 concentrations over the covering layer were very low, and the major CH4 concentrations were found between 60m and 90 cm depth, it is very probable USW has been compacted with low permeability materials (e.g., clay) avoiding large emissions to the atmosphere and creating horizontal barriers within the waste that enable lateral gas migration. Horizontally, it can be seen that these gases migrated outside the disposal site following the topography and that CH4 disappeared leading to anomalous concentrations of CO2 whose values are greater than those produced by normal soil respiration. The isotopic value (δ13C) of this CO2 was also different from that of normal soil respiration (~−25 ‰) and reflected effects that generated isotopic depletion by diffusion (~−25 to −32 ‰). The analysis of C isotopes as the main tracer, together H isotopes, has allowed the effective detection of the origin and those secondary processes.Fil: Sanci, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaFil: Panarello, Hector Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; ArgentinaSpringer2016-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/44635Sanci, Romina; Panarello, Hector Osvaldo; Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas; Springer; Environmental Earth Sciences; 75; 4; 2-2016; 75-941866-6280CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12665-015-4906-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12665-015-4906-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:27Zoai:ri.conicet.gov.ar:11336/44635instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:27.768CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
title Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
spellingShingle Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
Sanci, Romina
Methane
Carbon Dioxide
Carbon Isotopes
Dissolved Carbon
title_short Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
title_full Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
title_fullStr Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
title_full_unstemmed Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
title_sort Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas
dc.creator.none.fl_str_mv Sanci, Romina
Panarello, Hector Osvaldo
author Sanci, Romina
author_facet Sanci, Romina
Panarello, Hector Osvaldo
author_role author
author2 Panarello, Hector Osvaldo
author2_role author
dc.subject.none.fl_str_mv Methane
Carbon Dioxide
Carbon Isotopes
Dissolved Carbon
topic Methane
Carbon Dioxide
Carbon Isotopes
Dissolved Carbon
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Isotopic compositions of CH4 and CO2 surface and subsurface gases and groundwater from an urban solid waste disposal site from Gualeguaychú city (Argentina) were measured to detect origin, depth distribution, migration lateral, CH4 oxidation, and dissolution in groundwater. The highest CH4 concentrations (60–88 %) with δ13C-CH4 (between −60 and −45 ‰) and δ2H-CH4 (between −350 and −260 ‰) were attributed to CH4 originated by microbial sources, v. gr. acetate fermentation. The δ13C-CO2 related to this CH4 (between −15 and −5.9 ‰) were compatible with this process. Also, the increase of DIC associated to an increase in δ13C-DIC values (−12.4, −6.4, −5.8, −1.5, +0.1 and +4 ‰) indicated the transport of dissolved gases (from methanogenesis) in the groundwater flow system. High excess deuterium in 3 piezometers suggests that there were hydrogen isotope exchange between CH4 and water too. Evidences for CH4 oxidation were decrease in CH4 concentrations, shift in C and H isotope ratios of CH4 to more enriched in the remaining CH4 (in both, δ13C-CH4 >−50 ‰ and δ2H >−260 ‰) and depletion in 13C of the associated CO2 (<−20 ‰). Since surface CH4 and CO2 concentrations over the covering layer were very low, and the major CH4 concentrations were found between 60m and 90 cm depth, it is very probable USW has been compacted with low permeability materials (e.g., clay) avoiding large emissions to the atmosphere and creating horizontal barriers within the waste that enable lateral gas migration. Horizontally, it can be seen that these gases migrated outside the disposal site following the topography and that CH4 disappeared leading to anomalous concentrations of CO2 whose values are greater than those produced by normal soil respiration. The isotopic value (δ13C) of this CO2 was also different from that of normal soil respiration (~−25 ‰) and reflected effects that generated isotopic depletion by diffusion (~−25 to −32 ‰). The analysis of C isotopes as the main tracer, together H isotopes, has allowed the effective detection of the origin and those secondary processes.
Fil: Sanci, Romina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
Fil: Panarello, Hector Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geocronología y Geología Isotopica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geocronología y Geología Isotópica; Argentina
description Isotopic compositions of CH4 and CO2 surface and subsurface gases and groundwater from an urban solid waste disposal site from Gualeguaychú city (Argentina) were measured to detect origin, depth distribution, migration lateral, CH4 oxidation, and dissolution in groundwater. The highest CH4 concentrations (60–88 %) with δ13C-CH4 (between −60 and −45 ‰) and δ2H-CH4 (between −350 and −260 ‰) were attributed to CH4 originated by microbial sources, v. gr. acetate fermentation. The δ13C-CO2 related to this CH4 (between −15 and −5.9 ‰) were compatible with this process. Also, the increase of DIC associated to an increase in δ13C-DIC values (−12.4, −6.4, −5.8, −1.5, +0.1 and +4 ‰) indicated the transport of dissolved gases (from methanogenesis) in the groundwater flow system. High excess deuterium in 3 piezometers suggests that there were hydrogen isotope exchange between CH4 and water too. Evidences for CH4 oxidation were decrease in CH4 concentrations, shift in C and H isotope ratios of CH4 to more enriched in the remaining CH4 (in both, δ13C-CH4 >−50 ‰ and δ2H >−260 ‰) and depletion in 13C of the associated CO2 (<−20 ‰). Since surface CH4 and CO2 concentrations over the covering layer were very low, and the major CH4 concentrations were found between 60m and 90 cm depth, it is very probable USW has been compacted with low permeability materials (e.g., clay) avoiding large emissions to the atmosphere and creating horizontal barriers within the waste that enable lateral gas migration. Horizontally, it can be seen that these gases migrated outside the disposal site following the topography and that CH4 disappeared leading to anomalous concentrations of CO2 whose values are greater than those produced by normal soil respiration. The isotopic value (δ13C) of this CO2 was also different from that of normal soil respiration (~−25 ‰) and reflected effects that generated isotopic depletion by diffusion (~−25 to −32 ‰). The analysis of C isotopes as the main tracer, together H isotopes, has allowed the effective detection of the origin and those secondary processes.
publishDate 2016
dc.date.none.fl_str_mv 2016-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/44635
Sanci, Romina; Panarello, Hector Osvaldo; Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas; Springer; Environmental Earth Sciences; 75; 4; 2-2016; 75-94
1866-6280
CONICET Digital
CONICET
url http://hdl.handle.net/11336/44635
identifier_str_mv Sanci, Romina; Panarello, Hector Osvaldo; Carbon stable isotopes as indicators of the origin and evolution of CO2 and CH4 in urban solid waste disposal sites and nearby areas; Springer; Environmental Earth Sciences; 75; 4; 2-2016; 75-94
1866-6280
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s12665-015-4906-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs12665-015-4906-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613337578471424
score 13.070432