Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
- Autores
- Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; Calvo, Natalia; de la Cámara, Alvaro; Charlton-Perez, Andrew; Domeisen, Daniela I.V.; Dunn Sigouin, Etienne; García Serrano, Javier; Garfinkel, Chaim I.; Hindley, Neil P.; Jia, Liwei; Jucker, Martin; Karpechko, Alexey Y.; Kim, Hera; Lang, Andrea L.; Lee, Simon H.; Lin, Pu; Osman, Marisol; Palmeiro, Froila M.; Perlwitz, Judith; Polichtchouk, Inna; Richter, Jadwiga H.; Schwartz, Chen; Son, Seok Woo; Statnaia, Irina; Taguchi, Masakazu; Tyrrell, Nicholas L.; Wright, Corwin J.; Wu, Rachel W.-Y.
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.
Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Abalos, Marta. Universidad Complutense de Madrid; España
Fil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; España
Fil: Barriopedro, David. Universidad Complutense de Madrid; España
Fil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Calvo, Natalia. Universidad Complutense de Madrid; España
Fil: de la Cámara, Alvaro. Universidad Complutense de Madrid; España
Fil: Charlton-Perez, Andrew. University of Reading; Reino Unido
Fil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; Noruega
Fil: García Serrano, Javier. Universidad de Barcelona; España
Fil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; Israel
Fil: Hindley, Neil P.. University of Bath; Reino Unido
Fil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; Australia
Fil: Karpechko, Alexey Y.. Finnish Meteorological Institute; Islandia
Fil: Kim, Hera. Seoul National University; Corea del Sur
Fil: Lang, Andrea L.. State University of New York; Estados Unidos
Fil: Lee, Simon H.. Columbia University; Estados Unidos
Fil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados Unidos
Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; Alemania
Fil: Palmeiro, Froila M.. Universidad de Barcelona; España
Fil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino Unido
Fil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados Unidos
Fil: Schwartz, Chen. The Hebrew University of Jerusalem; Israel
Fil: Son, Seok Woo. Seoul National University; Corea del Sur
Fil: Statnaia, Irina. Finnish Meteorological Institute; Finlandia
Fil: Taguchi, Masakazu. Aichi University Of Education; Japón
Fil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; Finlandia
Fil: Wright, Corwin J.. University of Bath; Reino Unido
Fil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich); - Materia
-
Sudden Stratospheric Warming
Eddy-driven Jet - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215519
Ver los metadatos del registro completo
id |
CONICETDig_45a235ab4ba08056251edc6fb9e022ab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215519 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systemsLawrence, Zachary D.Abalos, MartaAyarzagüena, BlancaBarriopedro, DavidButler, Amy H.Calvo, Nataliade la Cámara, AlvaroCharlton-Perez, AndrewDomeisen, Daniela I.V.Dunn Sigouin, EtienneGarcía Serrano, JavierGarfinkel, Chaim I.Hindley, Neil P.Jia, LiweiJucker, MartinKarpechko, Alexey Y.Kim, HeraLang, Andrea L.Lee, Simon H.Lin, PuOsman, MarisolPalmeiro, Froila M.Perlwitz, JudithPolichtchouk, InnaRichter, Jadwiga H.Schwartz, ChenSon, Seok WooStatnaia, IrinaTaguchi, MasakazuTyrrell, Nicholas L.Wright, Corwin J.Wu, Rachel W.-Y.Sudden Stratospheric WarmingEddy-driven Jethttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados UnidosFil: Abalos, Marta. Universidad Complutense de Madrid; EspañaFil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; EspañaFil: Barriopedro, David. Universidad Complutense de Madrid; EspañaFil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados UnidosFil: Calvo, Natalia. Universidad Complutense de Madrid; EspañaFil: de la Cámara, Alvaro. Universidad Complutense de Madrid; EspañaFil: Charlton-Perez, Andrew. University of Reading; Reino UnidoFil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; NoruegaFil: García Serrano, Javier. Universidad de Barcelona; EspañaFil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; IsraelFil: Hindley, Neil P.. University of Bath; Reino UnidoFil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados UnidosFil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; AustraliaFil: Karpechko, Alexey Y.. Finnish Meteorological Institute; IslandiaFil: Kim, Hera. Seoul National University; Corea del SurFil: Lang, Andrea L.. State University of New York; Estados UnidosFil: Lee, Simon H.. Columbia University; Estados UnidosFil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados UnidosFil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; AlemaniaFil: Palmeiro, Froila M.. Universidad de Barcelona; EspañaFil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados UnidosFil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino UnidoFil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados UnidosFil: Schwartz, Chen. The Hebrew University of Jerusalem; IsraelFil: Son, Seok Woo. Seoul National University; Corea del SurFil: Statnaia, Irina. Finnish Meteorological Institute; FinlandiaFil: Taguchi, Masakazu. Aichi University Of Education; JapónFil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; FinlandiaFil: Wright, Corwin J.. University of Bath; Reino UnidoFil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich);Copernicus Publications2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215519Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-10012698-4016CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-977-2022info:eu-repo/semantics/altIdentifier/url/https://wcd.copernicus.org/articles/3/977/2022/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:51Zoai:ri.conicet.gov.ar:11336/215519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:51.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
title |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
spellingShingle |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems Lawrence, Zachary D. Sudden Stratospheric Warming Eddy-driven Jet |
title_short |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
title_full |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
title_fullStr |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
title_full_unstemmed |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
title_sort |
Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems |
dc.creator.none.fl_str_mv |
Lawrence, Zachary D. Abalos, Marta Ayarzagüena, Blanca Barriopedro, David Butler, Amy H. Calvo, Natalia de la Cámara, Alvaro Charlton-Perez, Andrew Domeisen, Daniela I.V. Dunn Sigouin, Etienne García Serrano, Javier Garfinkel, Chaim I. Hindley, Neil P. Jia, Liwei Jucker, Martin Karpechko, Alexey Y. Kim, Hera Lang, Andrea L. Lee, Simon H. Lin, Pu Osman, Marisol Palmeiro, Froila M. Perlwitz, Judith Polichtchouk, Inna Richter, Jadwiga H. Schwartz, Chen Son, Seok Woo Statnaia, Irina Taguchi, Masakazu Tyrrell, Nicholas L. Wright, Corwin J. Wu, Rachel W.-Y. |
author |
Lawrence, Zachary D. |
author_facet |
Lawrence, Zachary D. Abalos, Marta Ayarzagüena, Blanca Barriopedro, David Butler, Amy H. Calvo, Natalia de la Cámara, Alvaro Charlton-Perez, Andrew Domeisen, Daniela I.V. Dunn Sigouin, Etienne García Serrano, Javier Garfinkel, Chaim I. Hindley, Neil P. Jia, Liwei Jucker, Martin Karpechko, Alexey Y. Kim, Hera Lang, Andrea L. Lee, Simon H. Lin, Pu Osman, Marisol Palmeiro, Froila M. Perlwitz, Judith Polichtchouk, Inna Richter, Jadwiga H. Schwartz, Chen Son, Seok Woo Statnaia, Irina Taguchi, Masakazu Tyrrell, Nicholas L. Wright, Corwin J. Wu, Rachel W.-Y. |
author_role |
author |
author2 |
Abalos, Marta Ayarzagüena, Blanca Barriopedro, David Butler, Amy H. Calvo, Natalia de la Cámara, Alvaro Charlton-Perez, Andrew Domeisen, Daniela I.V. Dunn Sigouin, Etienne García Serrano, Javier Garfinkel, Chaim I. Hindley, Neil P. Jia, Liwei Jucker, Martin Karpechko, Alexey Y. Kim, Hera Lang, Andrea L. Lee, Simon H. Lin, Pu Osman, Marisol Palmeiro, Froila M. Perlwitz, Judith Polichtchouk, Inna Richter, Jadwiga H. Schwartz, Chen Son, Seok Woo Statnaia, Irina Taguchi, Masakazu Tyrrell, Nicholas L. Wright, Corwin J. Wu, Rachel W.-Y. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
Sudden Stratospheric Warming Eddy-driven Jet |
topic |
Sudden Stratospheric Warming Eddy-driven Jet |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere. Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos Fil: Abalos, Marta. Universidad Complutense de Madrid; España Fil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; España Fil: Barriopedro, David. Universidad Complutense de Madrid; España Fil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados Unidos Fil: Calvo, Natalia. Universidad Complutense de Madrid; España Fil: de la Cámara, Alvaro. Universidad Complutense de Madrid; España Fil: Charlton-Perez, Andrew. University of Reading; Reino Unido Fil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich); Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; Noruega Fil: García Serrano, Javier. Universidad de Barcelona; España Fil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; Israel Fil: Hindley, Neil P.. University of Bath; Reino Unido Fil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos Fil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; Australia Fil: Karpechko, Alexey Y.. Finnish Meteorological Institute; Islandia Fil: Kim, Hera. Seoul National University; Corea del Sur Fil: Lang, Andrea L.. State University of New York; Estados Unidos Fil: Lee, Simon H.. Columbia University; Estados Unidos Fil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados Unidos Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; Alemania Fil: Palmeiro, Froila M.. Universidad de Barcelona; España Fil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados Unidos Fil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino Unido Fil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados Unidos Fil: Schwartz, Chen. The Hebrew University of Jerusalem; Israel Fil: Son, Seok Woo. Seoul National University; Corea del Sur Fil: Statnaia, Irina. Finnish Meteorological Institute; Finlandia Fil: Taguchi, Masakazu. Aichi University Of Education; Japón Fil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; Finlandia Fil: Wright, Corwin J.. University of Bath; Reino Unido Fil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich); |
description |
The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215519 Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-1001 2698-4016 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215519 |
identifier_str_mv |
Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-1001 2698-4016 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-977-2022 info:eu-repo/semantics/altIdentifier/url/https://wcd.copernicus.org/articles/3/977/2022/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083394584182784 |
score |
13.22299 |