Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems

Autores
Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; Calvo, Natalia; de la Cámara, Alvaro; Charlton-Perez, Andrew; Domeisen, Daniela I.V.; Dunn Sigouin, Etienne; García Serrano, Javier; Garfinkel, Chaim I.; Hindley, Neil P.; Jia, Liwei; Jucker, Martin; Karpechko, Alexey Y.; Kim, Hera; Lang, Andrea L.; Lee, Simon H.; Lin, Pu; Osman, Marisol; Palmeiro, Froila M.; Perlwitz, Judith; Polichtchouk, Inna; Richter, Jadwiga H.; Schwartz, Chen; Son, Seok Woo; Statnaia, Irina; Taguchi, Masakazu; Tyrrell, Nicholas L.; Wright, Corwin J.; Wu, Rachel W.-Y.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.
Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Abalos, Marta. Universidad Complutense de Madrid; España
Fil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; España
Fil: Barriopedro, David. Universidad Complutense de Madrid; España
Fil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Calvo, Natalia. Universidad Complutense de Madrid; España
Fil: de la Cámara, Alvaro. Universidad Complutense de Madrid; España
Fil: Charlton-Perez, Andrew. University of Reading; Reino Unido
Fil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; Noruega
Fil: García Serrano, Javier. Universidad de Barcelona; España
Fil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; Israel
Fil: Hindley, Neil P.. University of Bath; Reino Unido
Fil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; Australia
Fil: Karpechko, Alexey Y.. Finnish Meteorological Institute; Islandia
Fil: Kim, Hera. Seoul National University; Corea del Sur
Fil: Lang, Andrea L.. State University of New York; Estados Unidos
Fil: Lee, Simon H.. Columbia University; Estados Unidos
Fil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados Unidos
Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; Alemania
Fil: Palmeiro, Froila M.. Universidad de Barcelona; España
Fil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino Unido
Fil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados Unidos
Fil: Schwartz, Chen. The Hebrew University of Jerusalem; Israel
Fil: Son, Seok Woo. Seoul National University; Corea del Sur
Fil: Statnaia, Irina. Finnish Meteorological Institute; Finlandia
Fil: Taguchi, Masakazu. Aichi University Of Education; Japón
Fil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; Finlandia
Fil: Wright, Corwin J.. University of Bath; Reino Unido
Fil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich);
Materia
Sudden Stratospheric Warming
Eddy-driven Jet
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/215519

id CONICETDig_45a235ab4ba08056251edc6fb9e022ab
oai_identifier_str oai:ri.conicet.gov.ar:11336/215519
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systemsLawrence, Zachary D.Abalos, MartaAyarzagüena, BlancaBarriopedro, DavidButler, Amy H.Calvo, Nataliade la Cámara, AlvaroCharlton-Perez, AndrewDomeisen, Daniela I.V.Dunn Sigouin, EtienneGarcía Serrano, JavierGarfinkel, Chaim I.Hindley, Neil P.Jia, LiweiJucker, MartinKarpechko, Alexey Y.Kim, HeraLang, Andrea L.Lee, Simon H.Lin, PuOsman, MarisolPalmeiro, Froila M.Perlwitz, JudithPolichtchouk, InnaRichter, Jadwiga H.Schwartz, ChenSon, Seok WooStatnaia, IrinaTaguchi, MasakazuTyrrell, Nicholas L.Wright, Corwin J.Wu, Rachel W.-Y.Sudden Stratospheric WarmingEddy-driven Jethttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados UnidosFil: Abalos, Marta. Universidad Complutense de Madrid; EspañaFil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; EspañaFil: Barriopedro, David. Universidad Complutense de Madrid; EspañaFil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados UnidosFil: Calvo, Natalia. Universidad Complutense de Madrid; EspañaFil: de la Cámara, Alvaro. Universidad Complutense de Madrid; EspañaFil: Charlton-Perez, Andrew. University of Reading; Reino UnidoFil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich);Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; NoruegaFil: García Serrano, Javier. Universidad de Barcelona; EspañaFil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; IsraelFil: Hindley, Neil P.. University of Bath; Reino UnidoFil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados UnidosFil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; AustraliaFil: Karpechko, Alexey Y.. Finnish Meteorological Institute; IslandiaFil: Kim, Hera. Seoul National University; Corea del SurFil: Lang, Andrea L.. State University of New York; Estados UnidosFil: Lee, Simon H.. Columbia University; Estados UnidosFil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados UnidosFil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; AlemaniaFil: Palmeiro, Froila M.. Universidad de Barcelona; EspañaFil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados UnidosFil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino UnidoFil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados UnidosFil: Schwartz, Chen. The Hebrew University of Jerusalem; IsraelFil: Son, Seok Woo. Seoul National University; Corea del SurFil: Statnaia, Irina. Finnish Meteorological Institute; FinlandiaFil: Taguchi, Masakazu. Aichi University Of Education; JapónFil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; FinlandiaFil: Wright, Corwin J.. University of Bath; Reino UnidoFil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich);Copernicus Publications2022-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215519Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-10012698-4016CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-977-2022info:eu-repo/semantics/altIdentifier/url/https://wcd.copernicus.org/articles/3/977/2022/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:24:51Zoai:ri.conicet.gov.ar:11336/215519instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:24:51.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
title Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
spellingShingle Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
Lawrence, Zachary D.
Sudden Stratospheric Warming
Eddy-driven Jet
title_short Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
title_full Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
title_fullStr Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
title_full_unstemmed Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
title_sort Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems
dc.creator.none.fl_str_mv Lawrence, Zachary D.
Abalos, Marta
Ayarzagüena, Blanca
Barriopedro, David
Butler, Amy H.
Calvo, Natalia
de la Cámara, Alvaro
Charlton-Perez, Andrew
Domeisen, Daniela I.V.
Dunn Sigouin, Etienne
García Serrano, Javier
Garfinkel, Chaim I.
Hindley, Neil P.
Jia, Liwei
Jucker, Martin
Karpechko, Alexey Y.
Kim, Hera
Lang, Andrea L.
Lee, Simon H.
Lin, Pu
Osman, Marisol
Palmeiro, Froila M.
Perlwitz, Judith
Polichtchouk, Inna
Richter, Jadwiga H.
Schwartz, Chen
Son, Seok Woo
Statnaia, Irina
Taguchi, Masakazu
Tyrrell, Nicholas L.
Wright, Corwin J.
Wu, Rachel W.-Y.
author Lawrence, Zachary D.
author_facet Lawrence, Zachary D.
Abalos, Marta
Ayarzagüena, Blanca
Barriopedro, David
Butler, Amy H.
Calvo, Natalia
de la Cámara, Alvaro
Charlton-Perez, Andrew
Domeisen, Daniela I.V.
Dunn Sigouin, Etienne
García Serrano, Javier
Garfinkel, Chaim I.
Hindley, Neil P.
Jia, Liwei
Jucker, Martin
Karpechko, Alexey Y.
Kim, Hera
Lang, Andrea L.
Lee, Simon H.
Lin, Pu
Osman, Marisol
Palmeiro, Froila M.
Perlwitz, Judith
Polichtchouk, Inna
Richter, Jadwiga H.
Schwartz, Chen
Son, Seok Woo
Statnaia, Irina
Taguchi, Masakazu
Tyrrell, Nicholas L.
Wright, Corwin J.
Wu, Rachel W.-Y.
author_role author
author2 Abalos, Marta
Ayarzagüena, Blanca
Barriopedro, David
Butler, Amy H.
Calvo, Natalia
de la Cámara, Alvaro
Charlton-Perez, Andrew
Domeisen, Daniela I.V.
Dunn Sigouin, Etienne
García Serrano, Javier
Garfinkel, Chaim I.
Hindley, Neil P.
Jia, Liwei
Jucker, Martin
Karpechko, Alexey Y.
Kim, Hera
Lang, Andrea L.
Lee, Simon H.
Lin, Pu
Osman, Marisol
Palmeiro, Froila M.
Perlwitz, Judith
Polichtchouk, Inna
Richter, Jadwiga H.
Schwartz, Chen
Son, Seok Woo
Statnaia, Irina
Taguchi, Masakazu
Tyrrell, Nicholas L.
Wright, Corwin J.
Wu, Rachel W.-Y.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Sudden Stratospheric Warming
Eddy-driven Jet
topic Sudden Stratospheric Warming
Eddy-driven Jet
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.
Fil: Lawrence, Zachary D.. State University of Colorado at Boulder; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Abalos, Marta. Universidad Complutense de Madrid; España
Fil: Ayarzagüena, Blanca. Universidad Complutense de Madrid; España
Fil: Barriopedro, David. Universidad Complutense de Madrid; España
Fil: Butler, Amy H.. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Calvo, Natalia. Universidad Complutense de Madrid; España
Fil: de la Cámara, Alvaro. Universidad Complutense de Madrid; España
Fil: Charlton-Perez, Andrew. University of Reading; Reino Unido
Fil: Domeisen, Daniela I.V.. Universite de Lausanne; Suiza. Eidgenossische Technische Hochschule zurich (eth Zurich);
Fil: Dunn Sigouin, Etienne. Norwegian Research Centre and Bjerknes Centre for Climate Research; Noruega
Fil: García Serrano, Javier. Universidad de Barcelona; España
Fil: Garfinkel, Chaim I.. The Hebrew University of Jerusalem; Israel
Fil: Hindley, Neil P.. University of Bath; Reino Unido
Fil: Jia, Liwei. University Corporation For Atmospheric Research; Estados Unidos. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Jucker, Martin. Arc Centre Of Excellence For Climate Extremes; Australia. University of New South Wales; Australia
Fil: Karpechko, Alexey Y.. Finnish Meteorological Institute; Islandia
Fil: Kim, Hera. Seoul National University; Corea del Sur
Fil: Lang, Andrea L.. State University of New York; Estados Unidos
Fil: Lee, Simon H.. Columbia University; Estados Unidos
Fil: Lin, Pu. National Oceanic And Atmospheric Administration; Estados Unidos. University of Princeton; Estados Unidos
Fil: Osman, Marisol. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Karlsruhe Institute of Technology; Alemania
Fil: Palmeiro, Froila M.. Universidad de Barcelona; España
Fil: Perlwitz, Judith. National Oceanic And Atmospheric Administration; Estados Unidos
Fil: Polichtchouk, Inna. European Centre For Medium-range Weather Forecasts; Reino Unido
Fil: Richter, Jadwiga H.. National Center for Atmospheric Research; Estados Unidos
Fil: Schwartz, Chen. The Hebrew University of Jerusalem; Israel
Fil: Son, Seok Woo. Seoul National University; Corea del Sur
Fil: Statnaia, Irina. Finnish Meteorological Institute; Finlandia
Fil: Taguchi, Masakazu. Aichi University Of Education; Japón
Fil: Tyrrell, Nicholas L.. Finnish Meteorological Institute; Finlandia
Fil: Wright, Corwin J.. University of Bath; Reino Unido
Fil: Wu, Rachel W.-Y.. Eidgenossische Technische Hochschule zurich (eth Zurich);
description The stratosphere can be a source of predictability for surface weather on timescales of several weeks to months. However, the potential predictive skill gained from stratospheric variability can be limited by biases in the representation of stratospheric processes and the coupling of the stratosphere with surface climate in forecast systems. This study provides a first systematic identification of model biases in the stratosphere across a wide range of subseasonal forecast systems. It is found that many of the forecast systems considered exhibit warm global-mean temperature biases from the lower to middle stratosphere, too strong/cold wintertime polar vortices, and too cold extratropical upper-troposphere/lower-stratosphere regions. Furthermore, tropical stratospheric anomalies associated with the Quasi-Biennial Oscillation tend to decay toward each system’s climatology with lead time. In the Northern Hemisphere (NH), most systems do not capture the seasonal cycle of extreme-vortex-event probabilities, with an underestimation of sudden stratospheric warming events and an overestimation of strong vortex events in January. In the Southern Hemisphere (SH), springtime interannual variability in the polar vortex is generally underestimated, but the timing of the final breakdown of the polar vortex often happens too early in many of the prediction systems. These stratospheric biases tend to be considerably worse in systems with lower model lid heights. In both hemispheres, most systems with low-top atmospheric models also consistently underestimate the upward wave driving that affects the strength of the stratospheric polar vortex. We expect that the biases identified here will help guide model development for subseasonal-to-seasonal forecast systems and further our understanding of the role of the stratosphere in predictive skill in the troposphere.
publishDate 2022
dc.date.none.fl_str_mv 2022-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/215519
Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-1001
2698-4016
CONICET Digital
CONICET
url http://hdl.handle.net/11336/215519
identifier_str_mv Lawrence, Zachary D.; Abalos, Marta; Ayarzagüena, Blanca; Barriopedro, David; Butler, Amy H.; et al.; Quantifying stratospheric biases and identifying their potential sources in subseasonal forecast systems; Copernicus Publications; Weather and Climate Dynamics; 3; 3; 8-2022; 977-1001
2698-4016
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.5194/wcd-3-977-2022
info:eu-repo/semantics/altIdentifier/url/https://wcd.copernicus.org/articles/3/977/2022/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Copernicus Publications
publisher.none.fl_str_mv Copernicus Publications
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083394584182784
score 13.22299