Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.

Autores
Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Gambin, Brenda Laura; Abertondo, Victor; Borras, Lucas
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Knowledge on the genetic bases of physiological processes determining maize kernel weight (KW) is relevant for maize yield improvement. However, little is known about the genetic control of KW and its component traits: kernel growth rate (KGR) and grain-filling duration (GFD). We phenotyped several grain-filling traits in 245 RILs from the IBM Syn4 population (B73×Mo17) under two environments, and a multi-trait multi-environment quantitative trait loci (QTL) analysis was conducted. We were specifically interested inseeking genetic links of knowncorrelated traits atthe phenotypic level, like kernelmaximum water content(MWC) and KGR. Our specific objectives were (i)to conduct a QTL analysis over grain-filling traits to determine their genetic complexity,(ii)to study the relationships between kernel developmental traits at phenotypic and genetic levels, and (iii) to suggest possible candidate genes for each specific trait using detected QTL and B73 sequence data. All traits showed significant genotype × environment interactions (p < 0.001) and large phenotypic variability. KW variability was positively associated (p < 0.01) with variations in KGR (r = 0.79) and GFD (r = 0.32). As expected, KGR was positively correlated to MWC, while GFD was negatively correlated to the kernel moisture concentration at physiological maturity (MCPM). A total of 10 joint QTL were detected under both environments, located on chromosomes 1, 2, 4, 5, 6, 7, 9 and 10. Most QTL showed inconsistent effects underlying genotype × environment interactions. However, the multi-trait multi-environment approach helped understand genetic correlations between traits, where positive and consistent genetic correlations were observed between KW, KGR and MWC on chromosomes 2, 6, 9 and 10. Only one consistent QTL for KW, GFD and kernel desiccation rate (KDR) was detected. KGR and GFD showed no common consistent QTL, supporting previous observations on independent physiological control. Several detected QTL co-localized with previous mapping studies. With the use of B73 sequence data we described genes within QTL marker intervals, and discussed relevant candidate ones for future dissection. Results showing the co-localization of consistent QTL for KW, KGR and MWC suggest a common genetic basis for these critical secondary traits measured under field conditions.
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Departamento de Biologia. Cátedra de Fisiología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Abertondo, Victor. Advanta Semillas S.A.I.C.;
Fil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Cs.agrarias; . Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Materia
Candidate Genes
Grain-Filling Duration
Kernel Desiccation Rate
Kernel Growth Rate
Maximum Water Content
Moisture Concentration at Physiological Maturity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/1087

id CONICETDig_4598183b6af2c6f53f2ca2d2302cb5e7
oai_identifier_str oai:ri.conicet.gov.ar:11336/1087
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.Alvarez Prado, SantiagoLopez, Cesar GabrielGambin, Brenda LauraAbertondo, VictorBorras, LucasCandidate GenesGrain-Filling DurationKernel Desiccation RateKernel Growth RateMaximum Water ContentMoisture Concentration at Physiological Maturityhttps://purl.org/becyt/ford/4.1https://purl.org/becyt/ford/4Knowledge on the genetic bases of physiological processes determining maize kernel weight (KW) is relevant for maize yield improvement. However, little is known about the genetic control of KW and its component traits: kernel growth rate (KGR) and grain-filling duration (GFD). We phenotyped several grain-filling traits in 245 RILs from the IBM Syn4 population (B73×Mo17) under two environments, and a multi-trait multi-environment quantitative trait loci (QTL) analysis was conducted. We were specifically interested inseeking genetic links of knowncorrelated traits atthe phenotypic level, like kernelmaximum water content(MWC) and KGR. Our specific objectives were (i)to conduct a QTL analysis over grain-filling traits to determine their genetic complexity,(ii)to study the relationships between kernel developmental traits at phenotypic and genetic levels, and (iii) to suggest possible candidate genes for each specific trait using detected QTL and B73 sequence data. All traits showed significant genotype × environment interactions (p < 0.001) and large phenotypic variability. KW variability was positively associated (p < 0.01) with variations in KGR (r = 0.79) and GFD (r = 0.32). As expected, KGR was positively correlated to MWC, while GFD was negatively correlated to the kernel moisture concentration at physiological maturity (MCPM). A total of 10 joint QTL were detected under both environments, located on chromosomes 1, 2, 4, 5, 6, 7, 9 and 10. Most QTL showed inconsistent effects underlying genotype × environment interactions. However, the multi-trait multi-environment approach helped understand genetic correlations between traits, where positive and consistent genetic correlations were observed between KW, KGR and MWC on chromosomes 2, 6, 9 and 10. Only one consistent QTL for KW, GFD and kernel desiccation rate (KDR) was detected. KGR and GFD showed no common consistent QTL, supporting previous observations on independent physiological control. Several detected QTL co-localized with previous mapping studies. With the use of B73 sequence data we described genes within QTL marker intervals, and discussed relevant candidate ones for future dissection. Results showing the co-localization of consistent QTL for KW, KGR and MWC suggest a common genetic basis for these critical secondary traits measured under field conditions.Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; ArgentinaFil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Departamento de Biologia. Cátedra de Fisiología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Abertondo, Victor. Advanta Semillas S.A.I.C.;Fil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Cs.agrarias; . Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaElsevier Science Bv2013-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/1087Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Gambin, Brenda Laura; Abertondo, Victor; Borras, Lucas; Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.; Elsevier Science Bv; Field Crops Research; 145; 4-2013; 33-430378-4290enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2013.02.002info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:28Zoai:ri.conicet.gov.ar:11336/1087instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:28.667CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
title Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
spellingShingle Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
Alvarez Prado, Santiago
Candidate Genes
Grain-Filling Duration
Kernel Desiccation Rate
Kernel Growth Rate
Maximum Water Content
Moisture Concentration at Physiological Maturity
title_short Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
title_full Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
title_fullStr Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
title_full_unstemmed Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
title_sort Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.
dc.creator.none.fl_str_mv Alvarez Prado, Santiago
Lopez, Cesar Gabriel
Gambin, Brenda Laura
Abertondo, Victor
Borras, Lucas
author Alvarez Prado, Santiago
author_facet Alvarez Prado, Santiago
Lopez, Cesar Gabriel
Gambin, Brenda Laura
Abertondo, Victor
Borras, Lucas
author_role author
author2 Lopez, Cesar Gabriel
Gambin, Brenda Laura
Abertondo, Victor
Borras, Lucas
author2_role author
author
author
author
dc.subject.none.fl_str_mv Candidate Genes
Grain-Filling Duration
Kernel Desiccation Rate
Kernel Growth Rate
Maximum Water Content
Moisture Concentration at Physiological Maturity
topic Candidate Genes
Grain-Filling Duration
Kernel Desiccation Rate
Kernel Growth Rate
Maximum Water Content
Moisture Concentration at Physiological Maturity
purl_subject.fl_str_mv https://purl.org/becyt/ford/4.1
https://purl.org/becyt/ford/4
dc.description.none.fl_txt_mv Knowledge on the genetic bases of physiological processes determining maize kernel weight (KW) is relevant for maize yield improvement. However, little is known about the genetic control of KW and its component traits: kernel growth rate (KGR) and grain-filling duration (GFD). We phenotyped several grain-filling traits in 245 RILs from the IBM Syn4 population (B73×Mo17) under two environments, and a multi-trait multi-environment quantitative trait loci (QTL) analysis was conducted. We were specifically interested inseeking genetic links of knowncorrelated traits atthe phenotypic level, like kernelmaximum water content(MWC) and KGR. Our specific objectives were (i)to conduct a QTL analysis over grain-filling traits to determine their genetic complexity,(ii)to study the relationships between kernel developmental traits at phenotypic and genetic levels, and (iii) to suggest possible candidate genes for each specific trait using detected QTL and B73 sequence data. All traits showed significant genotype × environment interactions (p < 0.001) and large phenotypic variability. KW variability was positively associated (p < 0.01) with variations in KGR (r = 0.79) and GFD (r = 0.32). As expected, KGR was positively correlated to MWC, while GFD was negatively correlated to the kernel moisture concentration at physiological maturity (MCPM). A total of 10 joint QTL were detected under both environments, located on chromosomes 1, 2, 4, 5, 6, 7, 9 and 10. Most QTL showed inconsistent effects underlying genotype × environment interactions. However, the multi-trait multi-environment approach helped understand genetic correlations between traits, where positive and consistent genetic correlations were observed between KW, KGR and MWC on chromosomes 2, 6, 9 and 10. Only one consistent QTL for KW, GFD and kernel desiccation rate (KDR) was detected. KGR and GFD showed no common consistent QTL, supporting previous observations on independent physiological control. Several detected QTL co-localized with previous mapping studies. With the use of B73 sequence data we described genes within QTL marker intervals, and discussed relevant candidate ones for future dissection. Results showing the co-localization of consistent QTL for KW, KGR and MWC suggest a common genetic basis for these critical secondary traits measured under field conditions.
Fil: Alvarez Prado, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina
Fil: Lopez, Cesar Gabriel. Universidad Nacional de Lomas de Zamora. Facultad de Ciencias Agrarias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gambin, Brenda Laura. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Departamento de Biologia. Cátedra de Fisiología Vegetal; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Abertondo, Victor. Advanta Semillas S.A.I.C.;
Fil: Borras, Lucas. Universidad Nacional de Rosario. Facultad de Cs.agrarias; . Universidad Nacional de Rosario. Facultad de Ciencias Agrarias. Cátedra de Cultivo Extensivos Cereales y Oleaginosas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
description Knowledge on the genetic bases of physiological processes determining maize kernel weight (KW) is relevant for maize yield improvement. However, little is known about the genetic control of KW and its component traits: kernel growth rate (KGR) and grain-filling duration (GFD). We phenotyped several grain-filling traits in 245 RILs from the IBM Syn4 population (B73×Mo17) under two environments, and a multi-trait multi-environment quantitative trait loci (QTL) analysis was conducted. We were specifically interested inseeking genetic links of knowncorrelated traits atthe phenotypic level, like kernelmaximum water content(MWC) and KGR. Our specific objectives were (i)to conduct a QTL analysis over grain-filling traits to determine their genetic complexity,(ii)to study the relationships between kernel developmental traits at phenotypic and genetic levels, and (iii) to suggest possible candidate genes for each specific trait using detected QTL and B73 sequence data. All traits showed significant genotype × environment interactions (p < 0.001) and large phenotypic variability. KW variability was positively associated (p < 0.01) with variations in KGR (r = 0.79) and GFD (r = 0.32). As expected, KGR was positively correlated to MWC, while GFD was negatively correlated to the kernel moisture concentration at physiological maturity (MCPM). A total of 10 joint QTL were detected under both environments, located on chromosomes 1, 2, 4, 5, 6, 7, 9 and 10. Most QTL showed inconsistent effects underlying genotype × environment interactions. However, the multi-trait multi-environment approach helped understand genetic correlations between traits, where positive and consistent genetic correlations were observed between KW, KGR and MWC on chromosomes 2, 6, 9 and 10. Only one consistent QTL for KW, GFD and kernel desiccation rate (KDR) was detected. KGR and GFD showed no common consistent QTL, supporting previous observations on independent physiological control. Several detected QTL co-localized with previous mapping studies. With the use of B73 sequence data we described genes within QTL marker intervals, and discussed relevant candidate ones for future dissection. Results showing the co-localization of consistent QTL for KW, KGR and MWC suggest a common genetic basis for these critical secondary traits measured under field conditions.
publishDate 2013
dc.date.none.fl_str_mv 2013-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/1087
Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Gambin, Brenda Laura; Abertondo, Victor; Borras, Lucas; Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.; Elsevier Science Bv; Field Crops Research; 145; 4-2013; 33-43
0378-4290
url http://hdl.handle.net/11336/1087
identifier_str_mv Alvarez Prado, Santiago; Lopez, Cesar Gabriel; Gambin, Brenda Laura; Abertondo, Victor; Borras, Lucas; Dissecting the genetic basis of physiological processes determining maize kernel weight using a RIL population.; Elsevier Science Bv; Field Crops Research; 145; 4-2013; 33-43
0378-4290
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.fcr.2013.02.002
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Bv
publisher.none.fl_str_mv Elsevier Science Bv
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614350189363200
score 13.070432