Aspects of electrostatics in BTZ geometries
- Autores
- Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.
Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina - Materia
-
BLACK HOLE
WORMHOLE
EINSTEIN-MAXWELL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/46300
Ver los metadatos del registro completo
id |
CONICETDig_457997ebd743051140e759bc07598b0a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/46300 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Aspects of electrostatics in BTZ geometriesHerrera, YagoHurovich, Valeria LauraSantillán, Osvaldo PabloSimeone, Claudio MauricioBLACK HOLEWORMHOLEEINSTEIN-MAXWELLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46300Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-85042330556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.085042info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.0575info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.085042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:11Zoai:ri.conicet.gov.ar:11336/46300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:11.963CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Aspects of electrostatics in BTZ geometries |
title |
Aspects of electrostatics in BTZ geometries |
spellingShingle |
Aspects of electrostatics in BTZ geometries Herrera, Yago BLACK HOLE WORMHOLE EINSTEIN-MAXWELL |
title_short |
Aspects of electrostatics in BTZ geometries |
title_full |
Aspects of electrostatics in BTZ geometries |
title_fullStr |
Aspects of electrostatics in BTZ geometries |
title_full_unstemmed |
Aspects of electrostatics in BTZ geometries |
title_sort |
Aspects of electrostatics in BTZ geometries |
dc.creator.none.fl_str_mv |
Herrera, Yago Hurovich, Valeria Laura Santillán, Osvaldo Pablo Simeone, Claudio Mauricio |
author |
Herrera, Yago |
author_facet |
Herrera, Yago Hurovich, Valeria Laura Santillán, Osvaldo Pablo Simeone, Claudio Mauricio |
author_role |
author |
author2 |
Hurovich, Valeria Laura Santillán, Osvaldo Pablo Simeone, Claudio Mauricio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
BLACK HOLE WORMHOLE EINSTEIN-MAXWELL |
topic |
BLACK HOLE WORMHOLE EINSTEIN-MAXWELL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry. Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina |
description |
In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/46300 Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-8504233 0556-2821 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/46300 |
identifier_str_mv |
Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-8504233 0556-2821 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.085042 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.0575 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.085042 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781511232126976 |
score |
13.120347 |