Aspects of electrostatics in BTZ geometries

Autores
Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.
Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
BLACK HOLE
WORMHOLE
EINSTEIN-MAXWELL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/46300

id CONICETDig_457997ebd743051140e759bc07598b0a
oai_identifier_str oai:ri.conicet.gov.ar:11336/46300
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Aspects of electrostatics in BTZ geometriesHerrera, YagoHurovich, Valeria LauraSantillán, Osvaldo PabloSimeone, Claudio MauricioBLACK HOLEWORMHOLEEINSTEIN-MAXWELLhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaFil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaAmerican Physical Society2015-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/46300Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-85042330556-2821CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.085042info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.0575info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.085042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:11Zoai:ri.conicet.gov.ar:11336/46300instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:11.963CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Aspects of electrostatics in BTZ geometries
title Aspects of electrostatics in BTZ geometries
spellingShingle Aspects of electrostatics in BTZ geometries
Herrera, Yago
BLACK HOLE
WORMHOLE
EINSTEIN-MAXWELL
title_short Aspects of electrostatics in BTZ geometries
title_full Aspects of electrostatics in BTZ geometries
title_fullStr Aspects of electrostatics in BTZ geometries
title_full_unstemmed Aspects of electrostatics in BTZ geometries
title_sort Aspects of electrostatics in BTZ geometries
dc.creator.none.fl_str_mv Herrera, Yago
Hurovich, Valeria Laura
Santillán, Osvaldo Pablo
Simeone, Claudio Mauricio
author Herrera, Yago
author_facet Herrera, Yago
Hurovich, Valeria Laura
Santillán, Osvaldo Pablo
Simeone, Claudio Mauricio
author_role author
author2 Hurovich, Valeria Laura
Santillán, Osvaldo Pablo
Simeone, Claudio Mauricio
author2_role author
author
author
dc.subject.none.fl_str_mv BLACK HOLE
WORMHOLE
EINSTEIN-MAXWELL
topic BLACK HOLE
WORMHOLE
EINSTEIN-MAXWELL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.
Fil: Herrera, Yago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Hurovich, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Santillán, Osvaldo Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Fil: Simeone, Claudio Mauricio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description In the present paper the electrostatics of charges in nonrotating BTZ black hole and wormhole spacetimes is studied. Our attention is focused on the self-force of a point charge in the geometry, for which a regularization prescription based on the Haddamard Green function is employed. The differences between the self-force in both cases is a theoretical experiment for distinguishing both geometries, which otherwise are locally indistinguishable. This idea was applied before to four and higher-dimensional black holes by the present and other authors. However, the particularities of the BTZ geometry makes the analysis considerable more complicated than those. First, the BTZ spacetimes are not asymptotically flat but instead asymptotically AdS. In addition, the relative distance d ( r , r + 1 ) between two particles located at a radius r and r + 1 in the geometry tends to zero when r → ∞ . This behavior, which is radically different in a flat geometry, changes the analysis of the asymptotic conditions for the electrostatic field. The other problem is that there exist several regularization methods other than the one we are employing, and there does not exist a proof in three dimensions that they are equivalent. However, we focus on the Haddamard method and obtain an expression for the hypothetical self-force in series, and the resulting expansion is convergent to the real solution. We suspect that the convergence is not uniform, and furthermore there are no summation formulas at our disposal. It appears, for points that are far away from the black hole the calculation of the Haddamard self-force requires higher-order summation. These subtleties are carefully analyzed in the paper, and it is shown that they lead to severe problems when calculating the Haddamard self-force for asymptotic points in the geometry.
publishDate 2015
dc.date.none.fl_str_mv 2015-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/46300
Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-8504233
0556-2821
CONICET Digital
CONICET
url http://hdl.handle.net/11336/46300
identifier_str_mv Herrera, Yago; Hurovich, Valeria Laura; Santillán, Osvaldo Pablo; Simeone, Claudio Mauricio; Aspects of electrostatics in BTZ geometries; American Physical Society; Physical Review D; 92; 8; 10-2015; 8504201-8504233
0556-2821
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.92.085042
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1408.0575
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prd/abstract/10.1103/PhysRevD.92.085042
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781511232126976
score 13.120347