Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension

Autores
Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; Bringa, Eduardo Marcial
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For  (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Valencia, Felipe. Universidad Catolica de Maule; Chile
Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Amigo, Nicolás. Universidad San Sebastián; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
HIGH ENTROPY ALLOYS
MOLECULAR DYNAMICS
TWINNING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/222256

id CONICETDig_4576717ece3139e33fd4838e4cff3634
oai_identifier_str oai:ri.conicet.gov.ar:11336/222256
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial TensionDeluigi, Orlando RaulValencia, FelipeTramontina Videla, Diego RamiroAmigo, NicolásRojas Nunez, JavierBringa, Eduardo MarcialHIGH ENTROPY ALLOYSMOLECULAR DYNAMICSTWINNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For  (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Valencia, Felipe. Universidad Catolica de Maule; ChileFil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Amigo, Nicolás. Universidad San Sebastián; ChileFil: Rojas Nunez, Javier. Universidad de Santiago de Chile; ChileFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaMDPI2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222256Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-202073-4352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/2/357info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13020357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:10Zoai:ri.conicet.gov.ar:11336/222256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:10.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
title Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
spellingShingle Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
Deluigi, Orlando Raul
HIGH ENTROPY ALLOYS
MOLECULAR DYNAMICS
TWINNING
title_short Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
title_full Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
title_fullStr Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
title_full_unstemmed Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
title_sort Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
dc.creator.none.fl_str_mv Deluigi, Orlando Raul
Valencia, Felipe
Tramontina Videla, Diego Ramiro
Amigo, Nicolás
Rojas Nunez, Javier
Bringa, Eduardo Marcial
author Deluigi, Orlando Raul
author_facet Deluigi, Orlando Raul
Valencia, Felipe
Tramontina Videla, Diego Ramiro
Amigo, Nicolás
Rojas Nunez, Javier
Bringa, Eduardo Marcial
author_role author
author2 Valencia, Felipe
Tramontina Videla, Diego Ramiro
Amigo, Nicolás
Rojas Nunez, Javier
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv HIGH ENTROPY ALLOYS
MOLECULAR DYNAMICS
TWINNING
topic HIGH ENTROPY ALLOYS
MOLECULAR DYNAMICS
TWINNING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For  (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Valencia, Felipe. Universidad Catolica de Maule; Chile
Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Amigo, Nicolás. Universidad San Sebastián; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For  (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.
publishDate 2023
dc.date.none.fl_str_mv 2023-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/222256
Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-20
2073-4352
CONICET Digital
CONICET
url http://hdl.handle.net/11336/222256
identifier_str_mv Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-20
2073-4352
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/2/357
info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13020357
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv MDPI
publisher.none.fl_str_mv MDPI
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613206305144832
score 13.070432