Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension
- Autores
- Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; Bringa, Eduardo Marcial
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.
Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina
Fil: Valencia, Felipe. Universidad Catolica de Maule; Chile
Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Amigo, Nicolás. Universidad San Sebastián; Chile
Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile
Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina - Materia
-
HIGH ENTROPY ALLOYS
MOLECULAR DYNAMICS
TWINNING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/222256
Ver los metadatos del registro completo
id |
CONICETDig_4576717ece3139e33fd4838e4cff3634 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/222256 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial TensionDeluigi, Orlando RaulValencia, FelipeTramontina Videla, Diego RamiroAmigo, NicolásRojas Nunez, JavierBringa, Eduardo MarcialHIGH ENTROPY ALLOYSMOLECULAR DYNAMICSTWINNINGhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples.Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; ArgentinaFil: Valencia, Felipe. Universidad Catolica de Maule; ChileFil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Amigo, Nicolás. Universidad San Sebastián; ChileFil: Rojas Nunez, Javier. Universidad de Santiago de Chile; ChileFil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaMDPI2023-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/222256Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-202073-4352CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/2/357info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13020357info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:38:10Zoai:ri.conicet.gov.ar:11336/222256instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:38:10.662CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
title |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
spellingShingle |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension Deluigi, Orlando Raul HIGH ENTROPY ALLOYS MOLECULAR DYNAMICS TWINNING |
title_short |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
title_full |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
title_fullStr |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
title_full_unstemmed |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
title_sort |
Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension |
dc.creator.none.fl_str_mv |
Deluigi, Orlando Raul Valencia, Felipe Tramontina Videla, Diego Ramiro Amigo, Nicolás Rojas Nunez, Javier Bringa, Eduardo Marcial |
author |
Deluigi, Orlando Raul |
author_facet |
Deluigi, Orlando Raul Valencia, Felipe Tramontina Videla, Diego Ramiro Amigo, Nicolás Rojas Nunez, Javier Bringa, Eduardo Marcial |
author_role |
author |
author2 |
Valencia, Felipe Tramontina Videla, Diego Ramiro Amigo, Nicolás Rojas Nunez, Javier Bringa, Eduardo Marcial |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
HIGH ENTROPY ALLOYS MOLECULAR DYNAMICS TWINNING |
topic |
HIGH ENTROPY ALLOYS MOLECULAR DYNAMICS TWINNING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples. Fil: Deluigi, Orlando Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad de Mendoza. Facultad de Ingenieria; Argentina Fil: Valencia, Felipe. Universidad Catolica de Maule; Chile Fil: Tramontina Videla, Diego Ramiro. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina Fil: Amigo, Nicolás. Universidad San Sebastián; Chile Fil: Rojas Nunez, Javier. Universidad de Santiago de Chile; Chile Fil: Bringa, Eduardo Marcial. Universidad de Mendoza. Facultad de Ingenieria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina |
description |
There is a growing interest in High Entropy Alloys (HEAs) due to their outstanding mechanical properties. Most simulation studies have focused on face-centered cubic (fcc) HEAs; however, bcc HEAs can offer a larger elastic modulus and plastic yielding, thus, becoming possible candidates for the next generation of refractory materials. In this work, we focus on molecular dynamics (MD) simulations of bcc HfNbTaZr nanocrystalline samples, with a grain size (d) between 5 and 17 nm, deformed under tension at 300 K. The elastic modulus increases with the grain size and reaches a plateau near 10 nm. We find the typical inverse Hall–Petch (HP) behavior with yield strength, ultimate tensile stress (UTS), and flow stress increasing with d. Up to 12 nm, there are contributions from dislocations and twins; however, grain boundary (GB) activity dominates deformation. For the 5 nm grains, the GB disorder extends and leads to extensive amorphization and grain size reduction. For (Formula presented.) nm, there is a HP-type behavior with dislocations and twinning controlling deformation. For this regime, there is hardening at large strains. Compared to bcc single metal samples, the HP maximum of this HEA appears at a lower grain size, and this could be related to the chemical complexity facilitating dislocation nucleation. We use machine learning to help understand deformation regimes. We also compare our results to a single crystal (SC) HfNbTaZr HEA deformed along [001] and find that the single crystal is weaker than the nanocrystalline samples. The single crystal deforms initially by twinning and then rapidly by dislocation multiplication, leading to strong hardening. It has been proposed that edge dislocations play a major role in bcc HEA plasticity, and we also analyze the relative contributions of edge versus screw dislocations during deformation for both single crystal and nanocrystalline samples. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/222256 Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-20 2073-4352 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/222256 |
identifier_str_mv |
Deluigi, Orlando Raul; Valencia, Felipe; Tramontina Videla, Diego Ramiro; Amigo, Nicolás; Rojas Nunez, Javier; et al.; Influence of Grain Size on Mechanical Properties of a Refractory High Entropy Alloy under Uniaxial Tension; MDPI; Crystals; 13; 2; 2-2023; 1-20 2073-4352 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2073-4352/13/2/357 info:eu-repo/semantics/altIdentifier/doi/10.3390/cryst13020357 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613206305144832 |
score |
13.070432 |