A simple model of the high-frequency dynamic mobility in concentrated suspensions

Autores
Ahualli, Silvia; Delgado, Angel V.; Grosse, Constantino
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: i) the back flow of fluid induced by the electrophoretic motion of  the particles; ii) the electrostatic interactions among particles; iii) the difference between the macroscopic and the external electric fields; iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O’Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.
Fil: Ahualli, Silvia. Universidad de Granada; España
Fil: Delgado, Angel V.. Universidad de Granada; España
Fil: Grosse, Constantino. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Materia
Dynamic mobility
Electroacoustic methods
Hydrodynamic interactions
Concentrated dispersions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/85871

id CONICETDig_456cd6588d3ee95e35b8211aa15bcbd8
oai_identifier_str oai:ri.conicet.gov.ar:11336/85871
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A simple model of the high-frequency dynamic mobility in concentrated suspensionsAhualli, SilviaDelgado, Angel V.Grosse, ConstantinoDynamic mobilityElectroacoustic methodsHydrodynamic interactionsConcentrated dispersionshttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: i) the back flow of fluid induced by the electrophoretic motion of  the particles; ii) the electrostatic interactions among particles; iii) the difference between the macroscopic and the external electric fields; iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O’Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.Fil: Ahualli, Silvia. Universidad de Granada; EspañaFil: Delgado, Angel V.. Universidad de Granada; EspañaFil: Grosse, Constantino. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaAcademic Press Inc Elsevier Science2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/85871Ahualli, Silvia; Delgado, Angel V.; Grosse, Constantino; A simple model of the high-frequency dynamic mobility in concentrated suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 301; 2; 12-2006; 660-6670021-9797CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2006.05.042info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021979706004693?via%3Dihubinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:53Zoai:ri.conicet.gov.ar:11336/85871instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:54.174CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A simple model of the high-frequency dynamic mobility in concentrated suspensions
title A simple model of the high-frequency dynamic mobility in concentrated suspensions
spellingShingle A simple model of the high-frequency dynamic mobility in concentrated suspensions
Ahualli, Silvia
Dynamic mobility
Electroacoustic methods
Hydrodynamic interactions
Concentrated dispersions
title_short A simple model of the high-frequency dynamic mobility in concentrated suspensions
title_full A simple model of the high-frequency dynamic mobility in concentrated suspensions
title_fullStr A simple model of the high-frequency dynamic mobility in concentrated suspensions
title_full_unstemmed A simple model of the high-frequency dynamic mobility in concentrated suspensions
title_sort A simple model of the high-frequency dynamic mobility in concentrated suspensions
dc.creator.none.fl_str_mv Ahualli, Silvia
Delgado, Angel V.
Grosse, Constantino
author Ahualli, Silvia
author_facet Ahualli, Silvia
Delgado, Angel V.
Grosse, Constantino
author_role author
author2 Delgado, Angel V.
Grosse, Constantino
author2_role author
author
dc.subject.none.fl_str_mv Dynamic mobility
Electroacoustic methods
Hydrodynamic interactions
Concentrated dispersions
topic Dynamic mobility
Electroacoustic methods
Hydrodynamic interactions
Concentrated dispersions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: i) the back flow of fluid induced by the electrophoretic motion of  the particles; ii) the electrostatic interactions among particles; iii) the difference between the macroscopic and the external electric fields; iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O’Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.
Fil: Ahualli, Silvia. Universidad de Granada; España
Fil: Delgado, Angel V.. Universidad de Granada; España
Fil: Grosse, Constantino. Universidad Nacional de Tucumán. Facultad de Ciencias Exactas y Tecnología. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
description Because electroacoustic techniques are gaining interest in many fields of colloid science, a number of theories dealing with the phenomenon of electrophoresis in high-frequency (on the order of the MHz) electric fields have been developed. In the present work we propose a straightforward derivation of a simple formula for the dynamic mobility of colloidal particles in mildly concentrated systems. Starting with a simple expression for the electrophoretic mobility in dilute suspensions, given as a function of the zeta potential and of the dipole coefficient, we introduce successive corrections related to: i) the back flow of fluid induced by the electrophoretic motion of  the particles; ii) the electrostatic interactions among particles; iii) the difference between the macroscopic and the external electric fields; iv) the difference between the zero-momentum and the laboratory reference frames. Considering furthermore that the frequency dependence of the dipole coefficient is due to the Maxwell-Wagner-O’Konski double-layer relaxation, we obtain a mobility expression that compares well with other (semi)analytical models and (in proper conditions) with numerical cell-model calculations. However, its main merit is that it allows to understand, to a large extent, the physical origin of the frequency and volume fraction dependences of the dynamic mobility.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/85871
Ahualli, Silvia; Delgado, Angel V.; Grosse, Constantino; A simple model of the high-frequency dynamic mobility in concentrated suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 301; 2; 12-2006; 660-667
0021-9797
CONICET Digital
CONICET
url http://hdl.handle.net/11336/85871
identifier_str_mv Ahualli, Silvia; Delgado, Angel V.; Grosse, Constantino; A simple model of the high-frequency dynamic mobility in concentrated suspensions; Academic Press Inc Elsevier Science; Journal of Colloid and Interface Science; 301; 2; 12-2006; 660-667
0021-9797
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jcis.2006.05.042
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021979706004693?via%3Dihub
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083347610075136
score 13.22299