Modeling of limestone dissolution for flue gas desulfurization with novel implications
- Autores
- De Blasio, Cataldo; Salierno, Gabriel Leonardo; Sinatra, Donatella; Cassanello, Miryan
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- solid-liquid dissolution is a central step in many industrial applications such as pharmaceutical, process engineering, and pollution control. Accurate mathematical models are proposed to improve reactor design and process operations. Analytical methods are significantly beneficial in the case of iterative methods used within experimental investigations. In the present study, a detailed analytical solution for the general case of solid particles dissolving in multiphase chemical reaction systems is presented. In this model, the authors consider a formulation that considers the particles' shape factor. The general case presented could be utilized within different problems of multiphase flows. These methods could be extended to different cases within the chemical engineering area. Examples are illustrated here in relation to limestone dissolution taking place within the Wet Flue Gas Desulfurization process, where calcium carbonate is dissolving in an acidic environment. The method is the most common used technology to abate SO2 released by fuel combustion. Limestone dissolution plays a major role in the process. Nevertheless, there is a need for improvements in the optimization of the WFGD process for scale-up purposes. The mathematical model has been tested by comparison with experimental data from several mild acidic dissolution assays of sedimentary and metamorphic limestone. We have found that R2 c 0.92 ± 0.06 from dozens of experiments. This fact verifies the model qualifications in capturing the main drivers of the system.
Fil: De Blasio, Cataldo. Abo Akademi; Finlandia
Fil: Salierno, Gabriel Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina
Fil: Sinatra, Donatella. Abo Akademi; Finlandia
Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina - Materia
-
FLUE GAS DESULFURIZATION
MATHEMATICAL MODELING
MODEL EXPERIMENTAL VERIFICATION
SHAPE FACTOR
SOLID PARTICLE DISSOLUTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/145745
Ver los metadatos del registro completo
id |
CONICETDig_4564f17122593297329763dfc12f1ed6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/145745 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modeling of limestone dissolution for flue gas desulfurization with novel implicationsDe Blasio, CataldoSalierno, Gabriel LeonardoSinatra, DonatellaCassanello, MiryanFLUE GAS DESULFURIZATIONMATHEMATICAL MODELINGMODEL EXPERIMENTAL VERIFICATIONSHAPE FACTORSOLID PARTICLE DISSOLUTIONhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2solid-liquid dissolution is a central step in many industrial applications such as pharmaceutical, process engineering, and pollution control. Accurate mathematical models are proposed to improve reactor design and process operations. Analytical methods are significantly beneficial in the case of iterative methods used within experimental investigations. In the present study, a detailed analytical solution for the general case of solid particles dissolving in multiphase chemical reaction systems is presented. In this model, the authors consider a formulation that considers the particles' shape factor. The general case presented could be utilized within different problems of multiphase flows. These methods could be extended to different cases within the chemical engineering area. Examples are illustrated here in relation to limestone dissolution taking place within the Wet Flue Gas Desulfurization process, where calcium carbonate is dissolving in an acidic environment. The method is the most common used technology to abate SO2 released by fuel combustion. Limestone dissolution plays a major role in the process. Nevertheless, there is a need for improvements in the optimization of the WFGD process for scale-up purposes. The mathematical model has been tested by comparison with experimental data from several mild acidic dissolution assays of sedimentary and metamorphic limestone. We have found that R2 c 0.92 ± 0.06 from dozens of experiments. This fact verifies the model qualifications in capturing the main drivers of the system.Fil: De Blasio, Cataldo. Abo Akademi; FinlandiaFil: Salierno, Gabriel Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; ArgentinaFil: Sinatra, Donatella. Abo Akademi; FinlandiaFil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; ArgentinaMolecular Diversity Preservation International2020-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/145745De Blasio, Cataldo; Salierno, Gabriel Leonardo; Sinatra, Donatella; Cassanello, Miryan; Modeling of limestone dissolution for flue gas desulfurization with novel implications; Molecular Diversity Preservation International; Energies; 13; 23; 11-2020; 1-201996-1073CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/13/23/6164info:eu-repo/semantics/altIdentifier/doi/10.3390/en13236164info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:10Zoai:ri.conicet.gov.ar:11336/145745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:10.806CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
title |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
spellingShingle |
Modeling of limestone dissolution for flue gas desulfurization with novel implications De Blasio, Cataldo FLUE GAS DESULFURIZATION MATHEMATICAL MODELING MODEL EXPERIMENTAL VERIFICATION SHAPE FACTOR SOLID PARTICLE DISSOLUTION |
title_short |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
title_full |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
title_fullStr |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
title_full_unstemmed |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
title_sort |
Modeling of limestone dissolution for flue gas desulfurization with novel implications |
dc.creator.none.fl_str_mv |
De Blasio, Cataldo Salierno, Gabriel Leonardo Sinatra, Donatella Cassanello, Miryan |
author |
De Blasio, Cataldo |
author_facet |
De Blasio, Cataldo Salierno, Gabriel Leonardo Sinatra, Donatella Cassanello, Miryan |
author_role |
author |
author2 |
Salierno, Gabriel Leonardo Sinatra, Donatella Cassanello, Miryan |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
FLUE GAS DESULFURIZATION MATHEMATICAL MODELING MODEL EXPERIMENTAL VERIFICATION SHAPE FACTOR SOLID PARTICLE DISSOLUTION |
topic |
FLUE GAS DESULFURIZATION MATHEMATICAL MODELING MODEL EXPERIMENTAL VERIFICATION SHAPE FACTOR SOLID PARTICLE DISSOLUTION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
solid-liquid dissolution is a central step in many industrial applications such as pharmaceutical, process engineering, and pollution control. Accurate mathematical models are proposed to improve reactor design and process operations. Analytical methods are significantly beneficial in the case of iterative methods used within experimental investigations. In the present study, a detailed analytical solution for the general case of solid particles dissolving in multiphase chemical reaction systems is presented. In this model, the authors consider a formulation that considers the particles' shape factor. The general case presented could be utilized within different problems of multiphase flows. These methods could be extended to different cases within the chemical engineering area. Examples are illustrated here in relation to limestone dissolution taking place within the Wet Flue Gas Desulfurization process, where calcium carbonate is dissolving in an acidic environment. The method is the most common used technology to abate SO2 released by fuel combustion. Limestone dissolution plays a major role in the process. Nevertheless, there is a need for improvements in the optimization of the WFGD process for scale-up purposes. The mathematical model has been tested by comparison with experimental data from several mild acidic dissolution assays of sedimentary and metamorphic limestone. We have found that R2 c 0.92 ± 0.06 from dozens of experiments. This fact verifies the model qualifications in capturing the main drivers of the system. Fil: De Blasio, Cataldo. Abo Akademi; Finlandia Fil: Salierno, Gabriel Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina Fil: Sinatra, Donatella. Abo Akademi; Finlandia Fil: Cassanello, Miryan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Industrias. Instituto de Tecnología de Alimentos y Procesos Quimicos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Tecnología de Alimentos y Procesos Quimicos.; Argentina |
description |
solid-liquid dissolution is a central step in many industrial applications such as pharmaceutical, process engineering, and pollution control. Accurate mathematical models are proposed to improve reactor design and process operations. Analytical methods are significantly beneficial in the case of iterative methods used within experimental investigations. In the present study, a detailed analytical solution for the general case of solid particles dissolving in multiphase chemical reaction systems is presented. In this model, the authors consider a formulation that considers the particles' shape factor. The general case presented could be utilized within different problems of multiphase flows. These methods could be extended to different cases within the chemical engineering area. Examples are illustrated here in relation to limestone dissolution taking place within the Wet Flue Gas Desulfurization process, where calcium carbonate is dissolving in an acidic environment. The method is the most common used technology to abate SO2 released by fuel combustion. Limestone dissolution plays a major role in the process. Nevertheless, there is a need for improvements in the optimization of the WFGD process for scale-up purposes. The mathematical model has been tested by comparison with experimental data from several mild acidic dissolution assays of sedimentary and metamorphic limestone. We have found that R2 c 0.92 ± 0.06 from dozens of experiments. This fact verifies the model qualifications in capturing the main drivers of the system. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/145745 De Blasio, Cataldo; Salierno, Gabriel Leonardo; Sinatra, Donatella; Cassanello, Miryan; Modeling of limestone dissolution for flue gas desulfurization with novel implications; Molecular Diversity Preservation International; Energies; 13; 23; 11-2020; 1-20 1996-1073 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/145745 |
identifier_str_mv |
De Blasio, Cataldo; Salierno, Gabriel Leonardo; Sinatra, Donatella; Cassanello, Miryan; Modeling of limestone dissolution for flue gas desulfurization with novel implications; Molecular Diversity Preservation International; Energies; 13; 23; 11-2020; 1-20 1996-1073 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1073/13/23/6164 info:eu-repo/semantics/altIdentifier/doi/10.3390/en13236164 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
publisher.none.fl_str_mv |
Molecular Diversity Preservation International |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613929110601728 |
score |
13.070432 |