Biobeds: a sustainable alternative to reduce point-source pesticides pollution

Autores
Benimeli, Claudia Susana
Año de publicación
2022
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
Pesticides are among the most employed organic compounds worldwide and play an important role in modern agriculture and food production. However, their inadequate management can lead to contamination of soil, surface, and groundwater. In the last decades, point-source pesticides pollution has been rigorously addressed, through the evaluation and implementation of bioprophylaxis strategies, in order to reduce or avoid these environmental impacts. For this purpose, biobeds (BB), initially developed in Sweden, are among the most promising technologies. They consist of a simple, ecological and cost-effective construction designed to retain and degrade pesticides, with three main components: a clay layer, a biomixture and a grass layer that covers the surface. Biomixture (BM) represents the biologically active part of a BB, where the adsorption and degradation of pesticides take place. It is composed of a lignocellulosic substrate, a humic rich component and a soil; each component plays an important role in the pesticides dissipation. However, the design of a BM should be adapted to each region and will depend on the availability of the materials. Also, the adequate efficiency of the BM can be improved by bioaugmentation with microorganisms with specific degrading capacities. Among a wide range of microorganisms, actinobacteria play an important ecological role in the environment due to their ability to remove a large diversity of xenobiotic compounds.Based on the above, this conference will present studies related to the behavior of BM formulated with different kind of soils and locally available by-products derived from the sugarcane industry in Argentina, and the effect of their bioaugmentation with autochthonous actinobacteria, on the pesticides removal ability. In a first stage, the performance of biomixtures formulated with a byproduct derived from a local industry (bagasse) and soils of different textures, and the effect of the bioaugmentation with a consortium of actinobacteria and fungi, on their lindane removal capacity was evaluated. As result of this preliminary work, silty loam soil was selected as the most efficient for formulating a BM.Then, the removal of atrazine (ATZ) was evaluated in BM formulated with three sugarcane by-products as alternative lignocellulosic substrates. Also, the effect of the bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of BM. BM formulated with bagasse, filter cake, or harvest residue, reached ATZ removal of 37–41% at 28 d of incubation, with t1/2 between 37.9 and 52.3 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the BM, reducing ATZ t1/2 regarding the controls, and achieved up to 72% of ATZ removal. The bioaugmentation improved the development of the microbiota in BM, specially actinobacteria and fungi and enhanced acid phosphatase activity and/or reversed a possible effect of ATZ over this enzymatic activity.
Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina
XVII Congreso Argentino de Microbiología General
Los Cocos
Argentina
Sociedad Argentina de Microbiología General
Materia
BIOBEDS
PESTICIDES
ACTINOBACTERIA
BIOMIXEDS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/201034

id CONICETDig_44c8697f6564bd4641f08a8860ee3554
oai_identifier_str oai:ri.conicet.gov.ar:11336/201034
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Biobeds: a sustainable alternative to reduce point-source pesticides pollutionBenimeli, Claudia SusanaBIOBEDSPESTICIDESACTINOBACTERIABIOMIXEDShttps://purl.org/becyt/ford/2.8https://purl.org/becyt/ford/2Pesticides are among the most employed organic compounds worldwide and play an important role in modern agriculture and food production. However, their inadequate management can lead to contamination of soil, surface, and groundwater. In the last decades, point-source pesticides pollution has been rigorously addressed, through the evaluation and implementation of bioprophylaxis strategies, in order to reduce or avoid these environmental impacts. For this purpose, biobeds (BB), initially developed in Sweden, are among the most promising technologies. They consist of a simple, ecological and cost-effective construction designed to retain and degrade pesticides, with three main components: a clay layer, a biomixture and a grass layer that covers the surface. Biomixture (BM) represents the biologically active part of a BB, where the adsorption and degradation of pesticides take place. It is composed of a lignocellulosic substrate, a humic rich component and a soil; each component plays an important role in the pesticides dissipation. However, the design of a BM should be adapted to each region and will depend on the availability of the materials. Also, the adequate efficiency of the BM can be improved by bioaugmentation with microorganisms with specific degrading capacities. Among a wide range of microorganisms, actinobacteria play an important ecological role in the environment due to their ability to remove a large diversity of xenobiotic compounds.Based on the above, this conference will present studies related to the behavior of BM formulated with different kind of soils and locally available by-products derived from the sugarcane industry in Argentina, and the effect of their bioaugmentation with autochthonous actinobacteria, on the pesticides removal ability. In a first stage, the performance of biomixtures formulated with a byproduct derived from a local industry (bagasse) and soils of different textures, and the effect of the bioaugmentation with a consortium of actinobacteria and fungi, on their lindane removal capacity was evaluated. As result of this preliminary work, silty loam soil was selected as the most efficient for formulating a BM.Then, the removal of atrazine (ATZ) was evaluated in BM formulated with three sugarcane by-products as alternative lignocellulosic substrates. Also, the effect of the bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of BM. BM formulated with bagasse, filter cake, or harvest residue, reached ATZ removal of 37–41% at 28 d of incubation, with t1/2 between 37.9 and 52.3 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the BM, reducing ATZ t1/2 regarding the controls, and achieved up to 72% of ATZ removal. The bioaugmentation improved the development of the microbiota in BM, specially actinobacteria and fungi and enhanced acid phosphatase activity and/or reversed a possible effect of ATZ over this enzymatic activity.Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; ArgentinaXVII Congreso Argentino de Microbiología GeneralLos CocosArgentinaSociedad Argentina de Microbiología GeneralSociedad Argentina de Microbiología General2022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectCongresoBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/201034Biobeds: a sustainable alternative to reduce point-source pesticides pollution; XVII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 35-35CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-de-Resumenes-SAMIGE-2022_final.pdfNacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:19:28Zoai:ri.conicet.gov.ar:11336/201034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:19:29.093CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Biobeds: a sustainable alternative to reduce point-source pesticides pollution
title Biobeds: a sustainable alternative to reduce point-source pesticides pollution
spellingShingle Biobeds: a sustainable alternative to reduce point-source pesticides pollution
Benimeli, Claudia Susana
BIOBEDS
PESTICIDES
ACTINOBACTERIA
BIOMIXEDS
title_short Biobeds: a sustainable alternative to reduce point-source pesticides pollution
title_full Biobeds: a sustainable alternative to reduce point-source pesticides pollution
title_fullStr Biobeds: a sustainable alternative to reduce point-source pesticides pollution
title_full_unstemmed Biobeds: a sustainable alternative to reduce point-source pesticides pollution
title_sort Biobeds: a sustainable alternative to reduce point-source pesticides pollution
dc.creator.none.fl_str_mv Benimeli, Claudia Susana
author Benimeli, Claudia Susana
author_facet Benimeli, Claudia Susana
author_role author
dc.subject.none.fl_str_mv BIOBEDS
PESTICIDES
ACTINOBACTERIA
BIOMIXEDS
topic BIOBEDS
PESTICIDES
ACTINOBACTERIA
BIOMIXEDS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.8
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Pesticides are among the most employed organic compounds worldwide and play an important role in modern agriculture and food production. However, their inadequate management can lead to contamination of soil, surface, and groundwater. In the last decades, point-source pesticides pollution has been rigorously addressed, through the evaluation and implementation of bioprophylaxis strategies, in order to reduce or avoid these environmental impacts. For this purpose, biobeds (BB), initially developed in Sweden, are among the most promising technologies. They consist of a simple, ecological and cost-effective construction designed to retain and degrade pesticides, with three main components: a clay layer, a biomixture and a grass layer that covers the surface. Biomixture (BM) represents the biologically active part of a BB, where the adsorption and degradation of pesticides take place. It is composed of a lignocellulosic substrate, a humic rich component and a soil; each component plays an important role in the pesticides dissipation. However, the design of a BM should be adapted to each region and will depend on the availability of the materials. Also, the adequate efficiency of the BM can be improved by bioaugmentation with microorganisms with specific degrading capacities. Among a wide range of microorganisms, actinobacteria play an important ecological role in the environment due to their ability to remove a large diversity of xenobiotic compounds.Based on the above, this conference will present studies related to the behavior of BM formulated with different kind of soils and locally available by-products derived from the sugarcane industry in Argentina, and the effect of their bioaugmentation with autochthonous actinobacteria, on the pesticides removal ability. In a first stage, the performance of biomixtures formulated with a byproduct derived from a local industry (bagasse) and soils of different textures, and the effect of the bioaugmentation with a consortium of actinobacteria and fungi, on their lindane removal capacity was evaluated. As result of this preliminary work, silty loam soil was selected as the most efficient for formulating a BM.Then, the removal of atrazine (ATZ) was evaluated in BM formulated with three sugarcane by-products as alternative lignocellulosic substrates. Also, the effect of the bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of BM. BM formulated with bagasse, filter cake, or harvest residue, reached ATZ removal of 37–41% at 28 d of incubation, with t1/2 between 37.9 and 52.3 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the BM, reducing ATZ t1/2 regarding the controls, and achieved up to 72% of ATZ removal. The bioaugmentation improved the development of the microbiota in BM, specially actinobacteria and fungi and enhanced acid phosphatase activity and/or reversed a possible effect of ATZ over this enzymatic activity.
Fil: Benimeli, Claudia Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Planta Piloto de Procesos Industriales Microbiológicos; Argentina. Universidad Nacional de Catamarca. Facultad de Ciencias Exactas y Naturales; Argentina
XVII Congreso Argentino de Microbiología General
Los Cocos
Argentina
Sociedad Argentina de Microbiología General
description Pesticides are among the most employed organic compounds worldwide and play an important role in modern agriculture and food production. However, their inadequate management can lead to contamination of soil, surface, and groundwater. In the last decades, point-source pesticides pollution has been rigorously addressed, through the evaluation and implementation of bioprophylaxis strategies, in order to reduce or avoid these environmental impacts. For this purpose, biobeds (BB), initially developed in Sweden, are among the most promising technologies. They consist of a simple, ecological and cost-effective construction designed to retain and degrade pesticides, with three main components: a clay layer, a biomixture and a grass layer that covers the surface. Biomixture (BM) represents the biologically active part of a BB, where the adsorption and degradation of pesticides take place. It is composed of a lignocellulosic substrate, a humic rich component and a soil; each component plays an important role in the pesticides dissipation. However, the design of a BM should be adapted to each region and will depend on the availability of the materials. Also, the adequate efficiency of the BM can be improved by bioaugmentation with microorganisms with specific degrading capacities. Among a wide range of microorganisms, actinobacteria play an important ecological role in the environment due to their ability to remove a large diversity of xenobiotic compounds.Based on the above, this conference will present studies related to the behavior of BM formulated with different kind of soils and locally available by-products derived from the sugarcane industry in Argentina, and the effect of their bioaugmentation with autochthonous actinobacteria, on the pesticides removal ability. In a first stage, the performance of biomixtures formulated with a byproduct derived from a local industry (bagasse) and soils of different textures, and the effect of the bioaugmentation with a consortium of actinobacteria and fungi, on their lindane removal capacity was evaluated. As result of this preliminary work, silty loam soil was selected as the most efficient for formulating a BM.Then, the removal of atrazine (ATZ) was evaluated in BM formulated with three sugarcane by-products as alternative lignocellulosic substrates. Also, the effect of the bioaugmentation with actinobacteria was evaluated as a strategy to enhance the depuration capacity of BM. BM formulated with bagasse, filter cake, or harvest residue, reached ATZ removal of 37–41% at 28 d of incubation, with t1/2 between 37.9 and 52.3 d. The bioaugmentation with Streptomyces sp. M7 accelerated the dissipation of the pesticide in the BM, reducing ATZ t1/2 regarding the controls, and achieved up to 72% of ATZ removal. The bioaugmentation improved the development of the microbiota in BM, specially actinobacteria and fungi and enhanced acid phosphatase activity and/or reversed a possible effect of ATZ over this enzymatic activity.
publishDate 2022
dc.date.none.fl_str_mv 2022
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Congreso
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/201034
Biobeds: a sustainable alternative to reduce point-source pesticides pollution; XVII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 35-35
CONICET Digital
CONICET
url http://hdl.handle.net/11336/201034
identifier_str_mv Biobeds: a sustainable alternative to reduce point-source pesticides pollution; XVII Congreso Argentino de Microbiología General; Los Cocos; Argentina; 2022; 35-35
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://samige.org.ar/wp-content/uploads/2022/10/Libro-de-Resumenes-SAMIGE-2022_final.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Sociedad Argentina de Microbiología General
publisher.none.fl_str_mv Sociedad Argentina de Microbiología General
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083343821570048
score 13.22299