Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
- Autores
- Vivanco, Lucía; Austin, Amy Theresa
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina - Materia
-
LITTER DECOMPOSITION
GLOBAL CHANGE
HOME FIELD ADVANTAGE
NITROGEN DEPOSITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/278051
Ver los metadatos del registro completo
| id |
CONICETDig_449c7ba3bc02453c0a01599caa8a8e7d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/278051 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, ArgentinaVivanco, LucíaAustin, Amy TheresaLITTER DECOMPOSITIONGLOBAL CHANGEHOME FIELD ADVANTAGENITROGEN DEPOSITIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaWiley Blackwell Publishing, Inc2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278051Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-19741354-1013CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2010.02344.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2010.02344.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:41:38Zoai:ri.conicet.gov.ar:11336/278051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:41:38.846CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| title |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| spellingShingle |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina Vivanco, Lucía LITTER DECOMPOSITION GLOBAL CHANGE HOME FIELD ADVANTAGE NITROGEN DEPOSITION |
| title_short |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| title_full |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| title_fullStr |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| title_full_unstemmed |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| title_sort |
Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina |
| dc.creator.none.fl_str_mv |
Vivanco, Lucía Austin, Amy Theresa |
| author |
Vivanco, Lucía |
| author_facet |
Vivanco, Lucía Austin, Amy Theresa |
| author_role |
author |
| author2 |
Austin, Amy Theresa |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
LITTER DECOMPOSITION GLOBAL CHANGE HOME FIELD ADVANTAGE NITROGEN DEPOSITION |
| topic |
LITTER DECOMPOSITION GLOBAL CHANGE HOME FIELD ADVANTAGE NITROGEN DEPOSITION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition. Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina Fil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina |
| description |
Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-05 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/278051 Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-1974 1354-1013 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/278051 |
| identifier_str_mv |
Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-1974 1354-1013 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2010.02344.x info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2010.02344.x |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| publisher.none.fl_str_mv |
Wiley Blackwell Publishing, Inc |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1852335322433585152 |
| score |
12.952241 |