Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina

Autores
Vivanco, Lucía; Austin, Amy Theresa
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Materia
LITTER DECOMPOSITION
GLOBAL CHANGE
HOME FIELD ADVANTAGE
NITROGEN DEPOSITION
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/278051

id CONICETDig_449c7ba3bc02453c0a01599caa8a8e7d
oai_identifier_str oai:ri.conicet.gov.ar:11336/278051
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, ArgentinaVivanco, LucíaAustin, Amy TheresaLITTER DECOMPOSITIONGLOBAL CHANGEHOME FIELD ADVANTAGENITROGEN DEPOSITIONhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaWiley Blackwell Publishing, Inc2011-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/278051Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-19741354-1013CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2010.02344.xinfo:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2010.02344.xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-23T13:41:38Zoai:ri.conicet.gov.ar:11336/278051instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-23 13:41:38.846CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
title Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
spellingShingle Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
Vivanco, Lucía
LITTER DECOMPOSITION
GLOBAL CHANGE
HOME FIELD ADVANTAGE
NITROGEN DEPOSITION
title_short Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
title_full Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
title_fullStr Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
title_full_unstemmed Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
title_sort Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina
dc.creator.none.fl_str_mv Vivanco, Lucía
Austin, Amy Theresa
author Vivanco, Lucía
author_facet Vivanco, Lucía
Austin, Amy Theresa
author_role author
author2 Austin, Amy Theresa
author2_role author
dc.subject.none.fl_str_mv LITTER DECOMPOSITION
GLOBAL CHANGE
HOME FIELD ADVANTAGE
NITROGEN DEPOSITION
topic LITTER DECOMPOSITION
GLOBAL CHANGE
HOME FIELD ADVANTAGE
NITROGEN DEPOSITION
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.
Fil: Vivanco, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
Fil: Austin, Amy Theresa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; Argentina
description Nitrogen (N) deposition and biodiversity loss are important drivers of global change, with uncertain consequences for carbon (C) and nutrient turnover in terrestrial ecosystems. We evaluated the simultaneous effects of N deposition and plant diversity on litter decomposition within a temperate forest in Patagonia. We identified ‘tree triangles’ created by the intersection of three tree-canopies that directly controlled micro-environmental conditions on the forest floor, and combined it with an N addition treatment. Triangles were composed of one or three Nothofagus species (N. dombeyi, N. obliqua or N. nervosa). We placed litterbags containing litter of each of the Nothofagus species and litterbags containing a mixture of the three species within all triangles and assessed mass loss over 2 years. We used a standard litter type in all triangles to independently evaluate triangle effects on decomposition. N addition had strong and positive effects on decomposition with an average 46% increase in the decomposition constant. Litter species significantly differed in their response to N addition; litter with higher lignin content and lower labile C content had larger increase in decomposition due to fertilization. Also, N addition disrupted two types of species interactions that control decomposition. The affinity relation between litter and decomposers, that enhanced decomposition of home litter (‘home-field advantage’) that was demonstrated to be significant for all three Nothofagus species, disappeared with N addition. Second, N addition modified litter species interactions, transforming neutral effects of litter mixtures to positive, nonadditive effects on mass loss. Finally, N addition stimulated N release from decomposing litter which was modulated by plant species effects. Together, these results suggest that N addition to unpolluted forests increases C loss, contrary to what has been observed for temperate forests in industrialized areas of the world, and that alterations in nutrient pools have effects on species interactions, including the elimination of affinity effects for decomposition.
publishDate 2011
dc.date.none.fl_str_mv 2011-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/278051
Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-1974
1354-1013
CONICET Digital
CONICET
url http://hdl.handle.net/11336/278051
identifier_str_mv Vivanco, Lucía; Austin, Amy Theresa; Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina; Wiley Blackwell Publishing, Inc; Global Change Biology; 17; 5; 5-2011; 1963-1974
1354-1013
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2486.2010.02344.x
info:eu-repo/semantics/altIdentifier/doi/10.1111/j.1365-2486.2010.02344.x
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
publisher.none.fl_str_mv Wiley Blackwell Publishing, Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1852335322433585152
score 12.952241