Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
- Autores
- Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.
Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
Quantized spin models
Long range order
Dzyaloshinskii-Moriya - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/121768
Ver los metadatos del registro completo
id |
CONICETDig_44447c42d0758827d07c88c8f44b8b5e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/121768 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactionsAvalishvili, N.Japaridze, G. I.Rossini, Gerardo LuisQuantized spin modelsLong range orderDzyaloshinskii-Moriyahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; GeorgiaFil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; GeorgiaFil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2019-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121768Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-121098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.99.205159info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.205159info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.09356info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:28Zoai:ri.conicet.gov.ar:11336/121768instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:28.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
title |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
spellingShingle |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions Avalishvili, N. Quantized spin models Long range order Dzyaloshinskii-Moriya |
title_short |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
title_full |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
title_fullStr |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
title_full_unstemmed |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
title_sort |
Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions |
dc.creator.none.fl_str_mv |
Avalishvili, N. Japaridze, G. I. Rossini, Gerardo Luis |
author |
Avalishvili, N. |
author_facet |
Avalishvili, N. Japaridze, G. I. Rossini, Gerardo Luis |
author_role |
author |
author2 |
Japaridze, G. I. Rossini, Gerardo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Quantized spin models Long range order Dzyaloshinskii-Moriya |
topic |
Quantized spin models Long range order Dzyaloshinskii-Moriya |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type. Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia Fil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia Fil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-05-31 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/121768 Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-12 1098-0121 2469-9969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/121768 |
identifier_str_mv |
Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-12 1098-0121 2469-9969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.99.205159 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.205159 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.09356 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613673112305664 |
score |
13.070432 |