Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions

Autores
Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.
Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Materia
Quantized spin models
Long range order
Dzyaloshinskii-Moriya
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/121768

id CONICETDig_44447c42d0758827d07c88c8f44b8b5e
oai_identifier_str oai:ri.conicet.gov.ar:11336/121768
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactionsAvalishvili, N.Japaridze, G. I.Rossini, Gerardo LuisQuantized spin modelsLong range orderDzyaloshinskii-Moriyahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; GeorgiaFil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; GeorgiaFil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaAmerican Physical Society2019-05-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/121768Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-121098-01212469-9969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.99.205159info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.205159info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.09356info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:28Zoai:ri.conicet.gov.ar:11336/121768instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:28.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
title Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
spellingShingle Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
Avalishvili, N.
Quantized spin models
Long range order
Dzyaloshinskii-Moriya
title_short Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
title_full Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
title_fullStr Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
title_full_unstemmed Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
title_sort Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions
dc.creator.none.fl_str_mv Avalishvili, N.
Japaridze, G. I.
Rossini, Gerardo Luis
author Avalishvili, N.
author_facet Avalishvili, N.
Japaridze, G. I.
Rossini, Gerardo Luis
author_role author
author2 Japaridze, G. I.
Rossini, Gerardo Luis
author2_role author
author
dc.subject.none.fl_str_mv Quantized spin models
Long range order
Dzyaloshinskii-Moriya
topic Quantized spin models
Long range order
Dzyaloshinskii-Moriya
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.
Fil: Avalishvili, N.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Japaridze, G. I.. Ilia State University; Georgia. Andronikashvili Institute of Physics; Georgia
Fil: Rossini, Gerardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
description The ground-state phase diagram of a spin S = 1 2 XXZ Heisenberg chain with spatially modulated Dzyaloshinskii-Moriya interaction H= n{J(Sx nSx n+1 +Sy nSy n+1 )+JzSz nSz n+1 +[D0 +(−1)nD1](Sx nSy n+1 −S y nSx n+1 )}is studied using the continuum-limit bosonization approach and extensive density-matrix renormalizationgroupcomputations.Itisshownthattheeffectivecontinuum-limitbosonizedtheoryofthemodelisgivenby the double-frequency sine-Gordon model (DSG) where the frequencies, i.e., the scaling dimensions of the two competing cosine perturbation terms, depend on the effective anisotropy parameter γ∗ =Jz/ J2 +D2 0 +D2 1. Exploring the ground-state properties of the DSG model we show that the zero-temperature phase diagram contains the following four phases: (i) the ferromagnetic phase at γ∗ −1; (ii) the gapless Luttinger-liquid (LL) phase at−1 <γ∗ <γ∗ C1 =− 1/√2; (iii) the gapped composite (C1) phase characterized by coexistence of the long-range-ordered (LRO) dimerization pattern ∼ (−1)n(SnSn+1) with the LRO alternating spin chirality pattern κ ∼ (−1)n(Sx nSy n+1 −Sy nSx n+1 ) atγ∗ C1 <γ∗ <γ∗ C2; and (iv) at γ∗ >γ∗ C2 > 1 the gapped composite (C2) phase characterized in addition to the coexisting spin dimerization and alternating chirality patterns, by the presence of LRO antiferromagnetic order. The transition from the LL to the C1 phase at γ∗ C1 belongs to the Berezinskii-Kosterlitz-Thouless universality class, while the transition at γ∗ = γ∗ C2 from C1 to C2 phase is of the Ising type.
publishDate 2019
dc.date.none.fl_str_mv 2019-05-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/121768
Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-12
1098-0121
2469-9969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/121768
identifier_str_mv Avalishvili, N.; Japaridze, G. I.; Rossini, Gerardo Luis; Long-range spin chirality dimer order in the Heisenberg chain with modulated Dzyaloshinskii-Moriya interactions; American Physical Society; Physical Review B: Condensed Matter and Materials Physics; 99; 20; 31-5-2019; 1-12
1098-0121
2469-9969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/ 10.1103/PhysRevB.99.205159
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prb/abstract/10.1103/PhysRevB.99.205159
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1902.09356
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613673112305664
score 13.070432