A comprehensive analysis of autocorrelation and bias in home range estimation

Autores
Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; Ali, Abdullahi H.; Altmann, Jeanne; Antunes, Pamela Castro; Belant, Jerrold L.; Beyer, Dean; Blaum, Niels; Böhning Gaese, Katrin; Cullen Jr., Laury; de Paula, Rogerio Cunha; Dekker, Jasja; Drescher Lehman, Jonathan; Farwig, Nina; Fichtel, Claudia; Fischer, Christina; Ford, Adam T.; Goheen, Jacob R.; Janssen, René; Jeltsch, Florian; Kauffman, Matthew; Kappeler, Peter M.; Koch, Flávia; LaPoint, Scott; Markham, A. Catherine; Medici, Emilia Patricia; Morato, Ronaldo G.; Nathan, Ran; Oliveira Santos, Luiz Gustavo R.; Olson, Kirk A.; Patterson, Bruce; Paviolo, Agustin Javier; Ramalho, Emiliano Esterci; Rösner, Sascha; Schabo, Dana G.; Selva, Nuria; Sergiel, Agnieszka; Xavier da Silva, Marina; Spiegel, Orr; Thompson, Peter; Ullmann, Wiebke; Ziḝba, Filip; Zwijacz Kozica, Tomasz; Fagan, William F.; Mueller, Thomas; Calabrese, Justin M.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos
Fil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Akre, Thomas S.. National Zoological Park; Estados Unidos
Fil: Alberts, Susan C.. University of Duke; Estados Unidos
Fil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; Kenia
Fil: Altmann, Jeanne. University of Princeton; Estados Unidos
Fil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Belant, Jerrold L.. State University of New York; Estados Unidos
Fil: Beyer, Dean. Universitat Phillips; Alemania
Fil: Blaum, Niels. Universitat Potsdam; Alemania
Fil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; Brasil
Fil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; Brasil
Fil: Dekker, Jasja. Jasja Dekker Dierecologie; Países Bajos
Fil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Farwig, Nina. Michigan State University; Estados Unidos
Fil: Fichtel, Claudia. German Primate Center; Alemania
Fil: Fischer, Christina. Universitat Technical Zu Munich; Alemania
Fil: Ford, Adam T.. University of British Columbia; Canadá
Fil: Goheen, Jacob R.. University of Wyoming; Estados Unidos
Fil: Janssen, René. Bionet Natuuronderzoek; Países Bajos
Fil: Jeltsch, Florian. Universitat Potsdam; Alemania
Fil: Kauffman, Matthew. University Of Wyoming; Estados Unidos
Fil: Kappeler, Peter M.. German Primate Center; Alemania
Fil: Koch, Flávia. German Primate Center; Alemania
Fil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados Unidos
Fil: Markham, A. Catherine. Stony Brook University; Estados Unidos
Fil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; Brasil
Fil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; Brasil
Fil: Nathan, Ran. The Hebrew University of Jerusalem; Israel
Fil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Patterson, Bruce. Field Museum of National History; Estados Unidos
Fil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; Brasil
Fil: Rösner, Sascha. Michigan State University; Estados Unidos
Fil: Schabo, Dana G.. Michigan State University; Estados Unidos
Fil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; Brasil
Fil: Spiegel, Orr. Universitat Tel Aviv; Israel
Fil: Thompson, Peter. University of Maryland; Estados Unidos
Fil: Ullmann, Wiebke. Universitat Potsdam; Alemania
Fil: Ziḝba, Filip. Tatra National Park; Polonia
Fil: Zwijacz Kozica, Tomasz. Tatra National Park; Polonia
Fil: Fagan, William F.. University of Maryland; Estados Unidos
Fil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos
Materia
ANIMAL MOVEMENT
KERNEL DENSITY ESTIMATION
LOCAL CONVEX HULL
MINIMUM CONVEX POLYGON
RANGE DISTRIBUTION
SPACE USE
TELEMETRY
TRACKING DATA
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/110257

id CONICETDig_43a3641d9cb166c76b771b92a9d71bd8
oai_identifier_str oai:ri.conicet.gov.ar:11336/110257
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A comprehensive analysis of autocorrelation and bias in home range estimationNoonan, Michael J.Tucker, Marlee A.Fleming, Christen H.Akre, Thomas S.Alberts, Susan C.Ali, Abdullahi H.Altmann, JeanneAntunes, Pamela CastroBelant, Jerrold L.Beyer, DeanBlaum, NielsBöhning Gaese, KatrinCullen Jr., Lauryde Paula, Rogerio CunhaDekker, JasjaDrescher Lehman, JonathanFarwig, NinaFichtel, ClaudiaFischer, ChristinaFord, Adam T.Goheen, Jacob R.Janssen, RenéJeltsch, FlorianKauffman, MatthewKappeler, Peter M.Koch, FláviaLaPoint, ScottMarkham, A. CatherineMedici, Emilia PatriciaMorato, Ronaldo G.Nathan, RanOliveira Santos, Luiz Gustavo R.Olson, Kirk A.Patterson, BrucePaviolo, Agustin JavierRamalho, Emiliano EsterciRösner, SaschaSchabo, Dana G.Selva, NuriaSergiel, AgnieszkaXavier da Silva, MarinaSpiegel, OrrThompson, PeterUllmann, WiebkeZiḝba, FilipZwijacz Kozica, TomaszFagan, William F.Mueller, ThomasCalabrese, Justin M.ANIMAL MOVEMENTKERNEL DENSITY ESTIMATIONLOCAL CONVEX HULLMINIMUM CONVEX POLYGONRANGE DISTRIBUTIONSPACE USETELEMETRYTRACKING DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; Países BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadáFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, René. Bionet Natuuronderzoek; Países BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, Flávia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziḝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosEcological Society of America2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110257Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-20180012-9615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/ecm.1344info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1344info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:28Zoai:ri.conicet.gov.ar:11336/110257instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:28.68CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A comprehensive analysis of autocorrelation and bias in home range estimation
title A comprehensive analysis of autocorrelation and bias in home range estimation
spellingShingle A comprehensive analysis of autocorrelation and bias in home range estimation
Noonan, Michael J.
ANIMAL MOVEMENT
KERNEL DENSITY ESTIMATION
LOCAL CONVEX HULL
MINIMUM CONVEX POLYGON
RANGE DISTRIBUTION
SPACE USE
TELEMETRY
TRACKING DATA
title_short A comprehensive analysis of autocorrelation and bias in home range estimation
title_full A comprehensive analysis of autocorrelation and bias in home range estimation
title_fullStr A comprehensive analysis of autocorrelation and bias in home range estimation
title_full_unstemmed A comprehensive analysis of autocorrelation and bias in home range estimation
title_sort A comprehensive analysis of autocorrelation and bias in home range estimation
dc.creator.none.fl_str_mv Noonan, Michael J.
Tucker, Marlee A.
Fleming, Christen H.
Akre, Thomas S.
Alberts, Susan C.
Ali, Abdullahi H.
Altmann, Jeanne
Antunes, Pamela Castro
Belant, Jerrold L.
Beyer, Dean
Blaum, Niels
Böhning Gaese, Katrin
Cullen Jr., Laury
de Paula, Rogerio Cunha
Dekker, Jasja
Drescher Lehman, Jonathan
Farwig, Nina
Fichtel, Claudia
Fischer, Christina
Ford, Adam T.
Goheen, Jacob R.
Janssen, René
Jeltsch, Florian
Kauffman, Matthew
Kappeler, Peter M.
Koch, Flávia
LaPoint, Scott
Markham, A. Catherine
Medici, Emilia Patricia
Morato, Ronaldo G.
Nathan, Ran
Oliveira Santos, Luiz Gustavo R.
Olson, Kirk A.
Patterson, Bruce
Paviolo, Agustin Javier
Ramalho, Emiliano Esterci
Rösner, Sascha
Schabo, Dana G.
Selva, Nuria
Sergiel, Agnieszka
Xavier da Silva, Marina
Spiegel, Orr
Thompson, Peter
Ullmann, Wiebke
Ziḝba, Filip
Zwijacz Kozica, Tomasz
Fagan, William F.
Mueller, Thomas
Calabrese, Justin M.
author Noonan, Michael J.
author_facet Noonan, Michael J.
Tucker, Marlee A.
Fleming, Christen H.
Akre, Thomas S.
Alberts, Susan C.
Ali, Abdullahi H.
Altmann, Jeanne
Antunes, Pamela Castro
Belant, Jerrold L.
Beyer, Dean
Blaum, Niels
Böhning Gaese, Katrin
Cullen Jr., Laury
de Paula, Rogerio Cunha
Dekker, Jasja
Drescher Lehman, Jonathan
Farwig, Nina
Fichtel, Claudia
Fischer, Christina
Ford, Adam T.
Goheen, Jacob R.
Janssen, René
Jeltsch, Florian
Kauffman, Matthew
Kappeler, Peter M.
Koch, Flávia
LaPoint, Scott
Markham, A. Catherine
Medici, Emilia Patricia
Morato, Ronaldo G.
Nathan, Ran
Oliveira Santos, Luiz Gustavo R.
Olson, Kirk A.
Patterson, Bruce
Paviolo, Agustin Javier
Ramalho, Emiliano Esterci
Rösner, Sascha
Schabo, Dana G.
Selva, Nuria
Sergiel, Agnieszka
Xavier da Silva, Marina
Spiegel, Orr
Thompson, Peter
Ullmann, Wiebke
Ziḝba, Filip
Zwijacz Kozica, Tomasz
Fagan, William F.
Mueller, Thomas
Calabrese, Justin M.
author_role author
author2 Tucker, Marlee A.
Fleming, Christen H.
Akre, Thomas S.
Alberts, Susan C.
Ali, Abdullahi H.
Altmann, Jeanne
Antunes, Pamela Castro
Belant, Jerrold L.
Beyer, Dean
Blaum, Niels
Böhning Gaese, Katrin
Cullen Jr., Laury
de Paula, Rogerio Cunha
Dekker, Jasja
Drescher Lehman, Jonathan
Farwig, Nina
Fichtel, Claudia
Fischer, Christina
Ford, Adam T.
Goheen, Jacob R.
Janssen, René
Jeltsch, Florian
Kauffman, Matthew
Kappeler, Peter M.
Koch, Flávia
LaPoint, Scott
Markham, A. Catherine
Medici, Emilia Patricia
Morato, Ronaldo G.
Nathan, Ran
Oliveira Santos, Luiz Gustavo R.
Olson, Kirk A.
Patterson, Bruce
Paviolo, Agustin Javier
Ramalho, Emiliano Esterci
Rösner, Sascha
Schabo, Dana G.
Selva, Nuria
Sergiel, Agnieszka
Xavier da Silva, Marina
Spiegel, Orr
Thompson, Peter
Ullmann, Wiebke
Ziḝba, Filip
Zwijacz Kozica, Tomasz
Fagan, William F.
Mueller, Thomas
Calabrese, Justin M.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv ANIMAL MOVEMENT
KERNEL DENSITY ESTIMATION
LOCAL CONVEX HULL
MINIMUM CONVEX POLYGON
RANGE DISTRIBUTION
SPACE USE
TELEMETRY
TRACKING DATA
topic ANIMAL MOVEMENT
KERNEL DENSITY ESTIMATION
LOCAL CONVEX HULL
MINIMUM CONVEX POLYGON
RANGE DISTRIBUTION
SPACE USE
TELEMETRY
TRACKING DATA
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos
Fil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Akre, Thomas S.. National Zoological Park; Estados Unidos
Fil: Alberts, Susan C.. University of Duke; Estados Unidos
Fil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; Kenia
Fil: Altmann, Jeanne. University of Princeton; Estados Unidos
Fil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Belant, Jerrold L.. State University of New York; Estados Unidos
Fil: Beyer, Dean. Universitat Phillips; Alemania
Fil: Blaum, Niels. Universitat Potsdam; Alemania
Fil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; Brasil
Fil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; Brasil
Fil: Dekker, Jasja. Jasja Dekker Dierecologie; Países Bajos
Fil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Farwig, Nina. Michigan State University; Estados Unidos
Fil: Fichtel, Claudia. German Primate Center; Alemania
Fil: Fischer, Christina. Universitat Technical Zu Munich; Alemania
Fil: Ford, Adam T.. University of British Columbia; Canadá
Fil: Goheen, Jacob R.. University of Wyoming; Estados Unidos
Fil: Janssen, René. Bionet Natuuronderzoek; Países Bajos
Fil: Jeltsch, Florian. Universitat Potsdam; Alemania
Fil: Kauffman, Matthew. University Of Wyoming; Estados Unidos
Fil: Kappeler, Peter M.. German Primate Center; Alemania
Fil: Koch, Flávia. German Primate Center; Alemania
Fil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados Unidos
Fil: Markham, A. Catherine. Stony Brook University; Estados Unidos
Fil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; Brasil
Fil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; Brasil
Fil: Nathan, Ran. The Hebrew University of Jerusalem; Israel
Fil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Patterson, Bruce. Field Museum of National History; Estados Unidos
Fil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; Brasil
Fil: Rösner, Sascha. Michigan State University; Estados Unidos
Fil: Schabo, Dana G.. Michigan State University; Estados Unidos
Fil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; Brasil
Fil: Spiegel, Orr. Universitat Tel Aviv; Israel
Fil: Thompson, Peter. University of Maryland; Estados Unidos
Fil: Ullmann, Wiebke. Universitat Potsdam; Alemania
Fil: Ziḝba, Filip. Tatra National Park; Polonia
Fil: Zwijacz Kozica, Tomasz. Tatra National Park; Polonia
Fil: Fagan, William F.. University of Maryland; Estados Unidos
Fil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos
description Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
publishDate 2018
dc.date.none.fl_str_mv 2018-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/110257
Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-2018
0012-9615
CONICET Digital
CONICET
url http://hdl.handle.net/11336/110257
identifier_str_mv Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-2018
0012-9615
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/ecm.1344
info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1344
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Ecological Society of America
publisher.none.fl_str_mv Ecological Society of America
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613505211170816
score 13.070432