A comprehensive analysis of autocorrelation and bias in home range estimation
- Autores
- Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; Ali, Abdullahi H.; Altmann, Jeanne; Antunes, Pamela Castro; Belant, Jerrold L.; Beyer, Dean; Blaum, Niels; Böhning Gaese, Katrin; Cullen Jr., Laury; de Paula, Rogerio Cunha; Dekker, Jasja; Drescher Lehman, Jonathan; Farwig, Nina; Fichtel, Claudia; Fischer, Christina; Ford, Adam T.; Goheen, Jacob R.; Janssen, René; Jeltsch, Florian; Kauffman, Matthew; Kappeler, Peter M.; Koch, Flávia; LaPoint, Scott; Markham, A. Catherine; Medici, Emilia Patricia; Morato, Ronaldo G.; Nathan, Ran; Oliveira Santos, Luiz Gustavo R.; Olson, Kirk A.; Patterson, Bruce; Paviolo, Agustin Javier; Ramalho, Emiliano Esterci; Rösner, Sascha; Schabo, Dana G.; Selva, Nuria; Sergiel, Agnieszka; Xavier da Silva, Marina; Spiegel, Orr; Thompson, Peter; Ullmann, Wiebke; Ziḝba, Filip; Zwijacz Kozica, Tomasz; Fagan, William F.; Mueller, Thomas; Calabrese, Justin M.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.
Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos
Fil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Akre, Thomas S.. National Zoological Park; Estados Unidos
Fil: Alberts, Susan C.. University of Duke; Estados Unidos
Fil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; Kenia
Fil: Altmann, Jeanne. University of Princeton; Estados Unidos
Fil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Belant, Jerrold L.. State University of New York; Estados Unidos
Fil: Beyer, Dean. Universitat Phillips; Alemania
Fil: Blaum, Niels. Universitat Potsdam; Alemania
Fil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; Alemania
Fil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; Brasil
Fil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; Brasil
Fil: Dekker, Jasja. Jasja Dekker Dierecologie; Países Bajos
Fil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Farwig, Nina. Michigan State University; Estados Unidos
Fil: Fichtel, Claudia. German Primate Center; Alemania
Fil: Fischer, Christina. Universitat Technical Zu Munich; Alemania
Fil: Ford, Adam T.. University of British Columbia; Canadá
Fil: Goheen, Jacob R.. University of Wyoming; Estados Unidos
Fil: Janssen, René. Bionet Natuuronderzoek; Países Bajos
Fil: Jeltsch, Florian. Universitat Potsdam; Alemania
Fil: Kauffman, Matthew. University Of Wyoming; Estados Unidos
Fil: Kappeler, Peter M.. German Primate Center; Alemania
Fil: Koch, Flávia. German Primate Center; Alemania
Fil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados Unidos
Fil: Markham, A. Catherine. Stony Brook University; Estados Unidos
Fil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; Brasil
Fil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; Brasil
Fil: Nathan, Ran. The Hebrew University of Jerusalem; Israel
Fil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; Brasil
Fil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados Unidos
Fil: Patterson, Bruce. Field Museum of National History; Estados Unidos
Fil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina
Fil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; Brasil
Fil: Rösner, Sascha. Michigan State University; Estados Unidos
Fil: Schabo, Dana G.. Michigan State University; Estados Unidos
Fil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia
Fil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; Brasil
Fil: Spiegel, Orr. Universitat Tel Aviv; Israel
Fil: Thompson, Peter. University of Maryland; Estados Unidos
Fil: Ullmann, Wiebke. Universitat Potsdam; Alemania
Fil: Ziḝba, Filip. Tatra National Park; Polonia
Fil: Zwijacz Kozica, Tomasz. Tatra National Park; Polonia
Fil: Fagan, William F.. University of Maryland; Estados Unidos
Fil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania
Fil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos - Materia
-
ANIMAL MOVEMENT
KERNEL DENSITY ESTIMATION
LOCAL CONVEX HULL
MINIMUM CONVEX POLYGON
RANGE DISTRIBUTION
SPACE USE
TELEMETRY
TRACKING DATA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110257
Ver los metadatos del registro completo
id |
CONICETDig_43a3641d9cb166c76b771b92a9d71bd8 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110257 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A comprehensive analysis of autocorrelation and bias in home range estimationNoonan, Michael J.Tucker, Marlee A.Fleming, Christen H.Akre, Thomas S.Alberts, Susan C.Ali, Abdullahi H.Altmann, JeanneAntunes, Pamela CastroBelant, Jerrold L.Beyer, DeanBlaum, NielsBöhning Gaese, KatrinCullen Jr., Lauryde Paula, Rogerio CunhaDekker, JasjaDrescher Lehman, JonathanFarwig, NinaFichtel, ClaudiaFischer, ChristinaFord, Adam T.Goheen, Jacob R.Janssen, RenéJeltsch, FlorianKauffman, MatthewKappeler, Peter M.Koch, FláviaLaPoint, ScottMarkham, A. CatherineMedici, Emilia PatriciaMorato, Ronaldo G.Nathan, RanOliveira Santos, Luiz Gustavo R.Olson, Kirk A.Patterson, BrucePaviolo, Agustin JavierRamalho, Emiliano EsterciRösner, SaschaSchabo, Dana G.Selva, NuriaSergiel, AgnieszkaXavier da Silva, MarinaSpiegel, OrrThompson, PeterUllmann, WiebkeZiḝba, FilipZwijacz Kozica, TomaszFagan, William F.Mueller, ThomasCalabrese, Justin M.ANIMAL MOVEMENTKERNEL DENSITY ESTIMATIONLOCAL CONVEX HULLMINIMUM CONVEX POLYGONRANGE DISTRIBUTIONSPACE USETELEMETRYTRACKING DATAhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data.Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosFil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados UnidosFil: Akre, Thomas S.. National Zoological Park; Estados UnidosFil: Alberts, Susan C.. University of Duke; Estados UnidosFil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; KeniaFil: Altmann, Jeanne. University of Princeton; Estados UnidosFil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; BrasilFil: Belant, Jerrold L.. State University of New York; Estados UnidosFil: Beyer, Dean. Universitat Phillips; AlemaniaFil: Blaum, Niels. Universitat Potsdam; AlemaniaFil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; AlemaniaFil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; BrasilFil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; BrasilFil: Dekker, Jasja. Jasja Dekker Dierecologie; Países BajosFil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados UnidosFil: Farwig, Nina. Michigan State University; Estados UnidosFil: Fichtel, Claudia. German Primate Center; AlemaniaFil: Fischer, Christina. Universitat Technical Zu Munich; AlemaniaFil: Ford, Adam T.. University of British Columbia; CanadáFil: Goheen, Jacob R.. University of Wyoming; Estados UnidosFil: Janssen, René. Bionet Natuuronderzoek; Países BajosFil: Jeltsch, Florian. Universitat Potsdam; AlemaniaFil: Kauffman, Matthew. University Of Wyoming; Estados UnidosFil: Kappeler, Peter M.. German Primate Center; AlemaniaFil: Koch, Flávia. German Primate Center; AlemaniaFil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados UnidosFil: Markham, A. Catherine. Stony Brook University; Estados UnidosFil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; BrasilFil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; BrasilFil: Nathan, Ran. The Hebrew University of Jerusalem; IsraelFil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados UnidosFil: Patterson, Bruce. Field Museum of National History; Estados UnidosFil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; ArgentinaFil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; BrasilFil: Rösner, Sascha. Michigan State University; Estados UnidosFil: Schabo, Dana G.. Michigan State University; Estados UnidosFil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; PoloniaFil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; BrasilFil: Spiegel, Orr. Universitat Tel Aviv; IsraelFil: Thompson, Peter. University of Maryland; Estados UnidosFil: Ullmann, Wiebke. Universitat Potsdam; AlemaniaFil: Ziḝba, Filip. Tatra National Park; PoloniaFil: Zwijacz Kozica, Tomasz. Tatra National Park; PoloniaFil: Fagan, William F.. University of Maryland; Estados UnidosFil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; AlemaniaFil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados UnidosEcological Society of America2018-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110257Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-20180012-9615CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/ecm.1344info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1344info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:48:28Zoai:ri.conicet.gov.ar:11336/110257instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:48:28.68CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A comprehensive analysis of autocorrelation and bias in home range estimation |
title |
A comprehensive analysis of autocorrelation and bias in home range estimation |
spellingShingle |
A comprehensive analysis of autocorrelation and bias in home range estimation Noonan, Michael J. ANIMAL MOVEMENT KERNEL DENSITY ESTIMATION LOCAL CONVEX HULL MINIMUM CONVEX POLYGON RANGE DISTRIBUTION SPACE USE TELEMETRY TRACKING DATA |
title_short |
A comprehensive analysis of autocorrelation and bias in home range estimation |
title_full |
A comprehensive analysis of autocorrelation and bias in home range estimation |
title_fullStr |
A comprehensive analysis of autocorrelation and bias in home range estimation |
title_full_unstemmed |
A comprehensive analysis of autocorrelation and bias in home range estimation |
title_sort |
A comprehensive analysis of autocorrelation and bias in home range estimation |
dc.creator.none.fl_str_mv |
Noonan, Michael J. Tucker, Marlee A. Fleming, Christen H. Akre, Thomas S. Alberts, Susan C. Ali, Abdullahi H. Altmann, Jeanne Antunes, Pamela Castro Belant, Jerrold L. Beyer, Dean Blaum, Niels Böhning Gaese, Katrin Cullen Jr., Laury de Paula, Rogerio Cunha Dekker, Jasja Drescher Lehman, Jonathan Farwig, Nina Fichtel, Claudia Fischer, Christina Ford, Adam T. Goheen, Jacob R. Janssen, René Jeltsch, Florian Kauffman, Matthew Kappeler, Peter M. Koch, Flávia LaPoint, Scott Markham, A. Catherine Medici, Emilia Patricia Morato, Ronaldo G. Nathan, Ran Oliveira Santos, Luiz Gustavo R. Olson, Kirk A. Patterson, Bruce Paviolo, Agustin Javier Ramalho, Emiliano Esterci Rösner, Sascha Schabo, Dana G. Selva, Nuria Sergiel, Agnieszka Xavier da Silva, Marina Spiegel, Orr Thompson, Peter Ullmann, Wiebke Ziḝba, Filip Zwijacz Kozica, Tomasz Fagan, William F. Mueller, Thomas Calabrese, Justin M. |
author |
Noonan, Michael J. |
author_facet |
Noonan, Michael J. Tucker, Marlee A. Fleming, Christen H. Akre, Thomas S. Alberts, Susan C. Ali, Abdullahi H. Altmann, Jeanne Antunes, Pamela Castro Belant, Jerrold L. Beyer, Dean Blaum, Niels Böhning Gaese, Katrin Cullen Jr., Laury de Paula, Rogerio Cunha Dekker, Jasja Drescher Lehman, Jonathan Farwig, Nina Fichtel, Claudia Fischer, Christina Ford, Adam T. Goheen, Jacob R. Janssen, René Jeltsch, Florian Kauffman, Matthew Kappeler, Peter M. Koch, Flávia LaPoint, Scott Markham, A. Catherine Medici, Emilia Patricia Morato, Ronaldo G. Nathan, Ran Oliveira Santos, Luiz Gustavo R. Olson, Kirk A. Patterson, Bruce Paviolo, Agustin Javier Ramalho, Emiliano Esterci Rösner, Sascha Schabo, Dana G. Selva, Nuria Sergiel, Agnieszka Xavier da Silva, Marina Spiegel, Orr Thompson, Peter Ullmann, Wiebke Ziḝba, Filip Zwijacz Kozica, Tomasz Fagan, William F. Mueller, Thomas Calabrese, Justin M. |
author_role |
author |
author2 |
Tucker, Marlee A. Fleming, Christen H. Akre, Thomas S. Alberts, Susan C. Ali, Abdullahi H. Altmann, Jeanne Antunes, Pamela Castro Belant, Jerrold L. Beyer, Dean Blaum, Niels Böhning Gaese, Katrin Cullen Jr., Laury de Paula, Rogerio Cunha Dekker, Jasja Drescher Lehman, Jonathan Farwig, Nina Fichtel, Claudia Fischer, Christina Ford, Adam T. Goheen, Jacob R. Janssen, René Jeltsch, Florian Kauffman, Matthew Kappeler, Peter M. Koch, Flávia LaPoint, Scott Markham, A. Catherine Medici, Emilia Patricia Morato, Ronaldo G. Nathan, Ran Oliveira Santos, Luiz Gustavo R. Olson, Kirk A. Patterson, Bruce Paviolo, Agustin Javier Ramalho, Emiliano Esterci Rösner, Sascha Schabo, Dana G. Selva, Nuria Sergiel, Agnieszka Xavier da Silva, Marina Spiegel, Orr Thompson, Peter Ullmann, Wiebke Ziḝba, Filip Zwijacz Kozica, Tomasz Fagan, William F. Mueller, Thomas Calabrese, Justin M. |
author2_role |
author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author author |
dc.subject.none.fl_str_mv |
ANIMAL MOVEMENT KERNEL DENSITY ESTIMATION LOCAL CONVEX HULL MINIMUM CONVEX POLYGON RANGE DISTRIBUTION SPACE USE TELEMETRY TRACKING DATA |
topic |
ANIMAL MOVEMENT KERNEL DENSITY ESTIMATION LOCAL CONVEX HULL MINIMUM CONVEX POLYGON RANGE DISTRIBUTION SPACE USE TELEMETRY TRACKING DATA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data. Fil: Noonan, Michael J.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos Fil: Tucker, Marlee A.. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania Fil: Fleming, Christen H.. University of Maryland; Estados Unidos. National Zoological Park; Estados Unidos Fil: Akre, Thomas S.. National Zoological Park; Estados Unidos Fil: Alberts, Susan C.. University of Duke; Estados Unidos Fil: Ali, Abdullahi H.. Hirola Conservation Programme. Garissa; Kenia Fil: Altmann, Jeanne. University of Princeton; Estados Unidos Fil: Antunes, Pamela Castro. Universidade Federal do Mato Grosso do Sul; Brasil Fil: Belant, Jerrold L.. State University of New York; Estados Unidos Fil: Beyer, Dean. Universitat Phillips; Alemania Fil: Blaum, Niels. Universitat Potsdam; Alemania Fil: Böhning Gaese, Katrin. Senckenberg Gesellschaft Für Naturforschung; Alemania. Goethe Universitat Frankfurt; Alemania Fil: Cullen Jr., Laury. Instituto de Pesquisas Ecológicas; Brasil Fil: de Paula, Rogerio Cunha. National Research Center For Carnivores Conservation; Brasil Fil: Dekker, Jasja. Jasja Dekker Dierecologie; Países Bajos Fil: Drescher Lehman, Jonathan. George Mason University; Estados Unidos. National Zoological Park; Estados Unidos Fil: Farwig, Nina. Michigan State University; Estados Unidos Fil: Fichtel, Claudia. German Primate Center; Alemania Fil: Fischer, Christina. Universitat Technical Zu Munich; Alemania Fil: Ford, Adam T.. University of British Columbia; Canadá Fil: Goheen, Jacob R.. University of Wyoming; Estados Unidos Fil: Janssen, René. Bionet Natuuronderzoek; Países Bajos Fil: Jeltsch, Florian. Universitat Potsdam; Alemania Fil: Kauffman, Matthew. University Of Wyoming; Estados Unidos Fil: Kappeler, Peter M.. German Primate Center; Alemania Fil: Koch, Flávia. German Primate Center; Alemania Fil: LaPoint, Scott. Max Planck Institute für Ornithologie; Alemania. Columbia University; Estados Unidos Fil: Markham, A. Catherine. Stony Brook University; Estados Unidos Fil: Medici, Emilia Patricia. Instituto de Pesquisas Ecológicas (IPE) ; Brasil Fil: Morato, Ronaldo G.. Institute For Conservation of The Neotropical Carnivores; Brasil. National Research Center For Carnivores Conservation; Brasil Fil: Nathan, Ran. The Hebrew University of Jerusalem; Israel Fil: Oliveira Santos, Luiz Gustavo R.. Universidade Federal do Mato Grosso do Sul; Brasil Fil: Olson, Kirk A.. Wildlife Conservation Society; Estados Unidos. National Zoological Park; Estados Unidos Fil: Patterson, Bruce. Field Museum of National History; Estados Unidos Fil: Paviolo, Agustin Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Puerto Iguazú; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste; Argentina Fil: Ramalho, Emiliano Esterci. Institute For Conservation of The Neotropical Carnivores; Brasil. Instituto de Desenvolvimento Sustentavel Mamirauá; Brasil Fil: Rösner, Sascha. Michigan State University; Estados Unidos Fil: Schabo, Dana G.. Michigan State University; Estados Unidos Fil: Selva, Nuria. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia Fil: Sergiel, Agnieszka. Institute of Nature Conservation of The Polish Academy of Sciences; Polonia Fil: Xavier da Silva, Marina. Parque Nacional do Iguaçu; Brasil Fil: Spiegel, Orr. Universitat Tel Aviv; Israel Fil: Thompson, Peter. University of Maryland; Estados Unidos Fil: Ullmann, Wiebke. Universitat Potsdam; Alemania Fil: Ziḝba, Filip. Tatra National Park; Polonia Fil: Zwijacz Kozica, Tomasz. Tatra National Park; Polonia Fil: Fagan, William F.. University of Maryland; Estados Unidos Fil: Mueller, Thomas. Senckenberg Gesellschaft Für Naturforschung; . Goethe Universitat Frankfurt; Alemania Fil: Calabrese, Justin M.. National Zoological Park; Estados Unidos. University of Maryland; Estados Unidos |
description |
Home range estimation is routine practice in ecological research. While advances in animal tracking technology have increased our capacity to collect data to support home range analysis, these same advances have also resulted in increasingly autocorrelated data. Consequently, the question of which home range estimator to use on modern, highly autocorrelated tracking data remains open. This question is particularly relevant given that most estimators assume independently sampled data. Here, we provide a comprehensive evaluation of the effects of autocorrelation on home range estimation. We base our study on an extensive data set of GPS locations from 369 individuals representing 27 species distributed across five continents. We first assemble a broad array of home range estimators, including Kernel Density Estimation (KDE) with four bandwidth optimizers (Gaussian reference function, autocorrelated-Gaussian reference function [AKDE], Silverman´s rule of thumb, and least squares cross-validation), Minimum Convex Polygon, and Local Convex Hull methods. Notably, all of these estimators except AKDE assume independent and identically distributed (IID) data. We then employ half-sample cross-validation to objectively quantify estimator performance, and the recently introduced effective sample size for home range area estimation ((Formula presented.)) to quantify the information content of each data set. We found that AKDE 95% area estimates were larger than conventional IID-based estimates by a mean factor of 2. The median number of cross-validated locations included in the hold-out sets by AKDE 95% (or 50%) estimates was 95.3% (or 50.1%), confirming the larger AKDE ranges were appropriately selective at the specified quantile. Conversely, conventional estimates exhibited negative bias that increased with decreasing (Formula presented.). To contextualize our empirical results, we performed a detailed simulation study to tease apart how sampling frequency, sampling duration, and the focal animal´s movement conspire to affect range estimates. Paralleling our empirical results, the simulation study demonstrated that AKDE was generally more accurate than conventional methods, particularly for small (Formula presented.). While 72% of the 369 empirical data sets had >1,000 total observations, only 4% had an (Formula presented.) >1,000, where 30% had an (Formula presented.) <30. In this frequently encountered scenario of small (Formula presented.), AKDE was the only estimator capable of producing an accurate home range estimate on autocorrelated data. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110257 Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-2018 0012-9615 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110257 |
identifier_str_mv |
Noonan, Michael J.; Tucker, Marlee A.; Fleming, Christen H.; Akre, Thomas S.; Alberts, Susan C.; et al.; A comprehensive analysis of autocorrelation and bias in home range estimation; Ecological Society of America; Ecological Monographs; 89; 2; 11-2018 0012-9615 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1002/ecm.1344 info:eu-repo/semantics/altIdentifier/url/https://esajournals.onlinelibrary.wiley.com/doi/full/10.1002/ecm.1344 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Ecological Society of America |
publisher.none.fl_str_mv |
Ecological Society of America |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613505211170816 |
score |
13.070432 |