Structure finding in cosmological simulations: the state of affairs

Autores
Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; Casado, Javier; Corbett Moran, Christine; Diemand, Juerg; Dolag, Klaus; Dominguez Tenreiro, Rosa; Elahi, Pascal; Falck, Bridget; Gottlober, Stefan; Han, Jiaxin; Klypin, Anatoly; Lukic, Zarija; Maciejewski, Michal; McBride, Cameron K.; Merchan, Manuel Enrique; Muldrew, Stuart I.; Neyrinck, Mark; Onions, Julian; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Ricker, Paul M.; Roy, Fabrice; Ruiz, Andrés Nicolás; Sgró, Mario Agustín; Springel, Volker; Stadel, Joachim; Sutter, P. M.; Tweed, Dylan; Zemp, Marcel
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the ‘halo finder comparison project’: we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and – to a minor extent – the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España
Fil: Pearce, Frazer R.. The University Of Nottingham; Reino Unido
Fil: Lux, Hanni. The University Of Nottingham; Reino Unido. University of Oxford; Reino Unido
Fil: Ascasibar, Yago. Universidad Autónoma de Madrid; España
Fil: Behroozi, Peter. Kavli Institute for Particle Astrophysics and Cosmology; Estados Unidos. University of Stanford; Estados Unidos
Fil: Casado, Javier. Universidad Autónoma de Madrid; España
Fil: Corbett Moran, Christine. Universitat Zurich; Suiza
Fil: Diemand, Juerg. Universitat Zurich; Suiza
Fil: Dolag, Klaus. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: Dominguez Tenreiro, Rosa. Universidad Autónoma de Madrid; España
Fil: Elahi, Pascal. The University Of Nottingham; Reino Unido. Shanghai Astronomical Observatory; China
Fil: Falck, Bridget. University of Portsmouth; Reino Unido
Fil: Gottlober, Stefan. Leibniz-Institut fur Astrophysik Potsdam; Alemania
Fil: Han, Jiaxin. Shanghai Astronomical Observatory; China. Chinese Academy of Sciences; República de China. University Of Durham; Reino Unido
Fil: Klypin, Anatoly. New Mexico State University; Estados Unidos
Fil: Lukic, Zarija. Lawrence Berkeley National Laboratory; Estados Unidos. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Maciejewski, Michal. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: McBride, Cameron K.. Vanderbilt University; Estados Unidos
Fil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Muldrew, Stuart I.. The University Of Nottingham; Reino Unido
Fil: Neyrinck, Mark. University Johns Hopkins; Estados Unidos
Fil: Onions, Julian. The University Of Nottingham; Reino Unido
Fil: Planelles, Susana. Università degli Studi di Trieste; Italia
Fil: Potter, Doug. Universitat Zurich; Suiza
Fil: Quilis, Vicent. Universidad de Valencia; España
Fil: Rasera, Yann. Université Paris Diderot - Paris 7; Francia
Fil: Ricker, Paul M.. University of Illinois at Urbana; Estados Unidos
Fil: Roy, Fabrice. Université Paris Diderot - Paris 7; Francia
Fil: Ruiz, Andrés Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Springel, Volker. Heidelberg Institute for Theoretical Studies; Alemania
Fil: Stadel, Joachim. Universitat Zurich; Suiza
Fil: Sutter, P. M.. University of Illinois at Urbana; Estados Unidos. Ohio State University; Estados Unidos. Institut d’Astrophysique de Paris; Francia
Fil: Tweed, Dylan. The Hebrew University Of Jerusalem; Israel
Fil: Zemp, Marcel. Peking University; República de China
Materia
GALAXIES EVOLUTION
GALAXIES HALOES
LUMINOSITY FUNCTION
GALAXIES STATISTICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29314

id CONICETDig_43a247e29970be5f58ceef4b61193b6d
oai_identifier_str oai:ri.conicet.gov.ar:11336/29314
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Structure finding in cosmological simulations: the state of affairsKnebe, AlexanderPearce, Frazer R.Lux, HanniAscasibar, YagoBehroozi, PeterCasado, JavierCorbett Moran, ChristineDiemand, JuergDolag, KlausDominguez Tenreiro, RosaElahi, PascalFalck, BridgetGottlober, StefanHan, JiaxinKlypin, AnatolyLukic, ZarijaMaciejewski, MichalMcBride, Cameron K.Merchan, Manuel EnriqueMuldrew, Stuart I.Neyrinck, MarkOnions, JulianPlanelles, SusanaPotter, DougQuilis, VicentRasera, YannRicker, Paul M.Roy, FabriceRuiz, Andrés NicolásSgró, Mario AgustínSpringel, VolkerStadel, JoachimSutter, P. M.Tweed, DylanZemp, MarcelGALAXIES EVOLUTIONGALAXIES HALOESLUMINOSITY FUNCTIONGALAXIES STATISTICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the ‘halo finder comparison project’: we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and – to a minor extent – the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.Fil: Knebe, Alexander. Universidad Autónoma de Madrid; EspañaFil: Pearce, Frazer R.. The University Of Nottingham; Reino UnidoFil: Lux, Hanni. The University Of Nottingham; Reino Unido. University of Oxford; Reino UnidoFil: Ascasibar, Yago. Universidad Autónoma de Madrid; EspañaFil: Behroozi, Peter. Kavli Institute for Particle Astrophysics and Cosmology; Estados Unidos. University of Stanford; Estados UnidosFil: Casado, Javier. Universidad Autónoma de Madrid; EspañaFil: Corbett Moran, Christine. Universitat Zurich; SuizaFil: Diemand, Juerg. Universitat Zurich; SuizaFil: Dolag, Klaus. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; AlemaniaFil: Dominguez Tenreiro, Rosa. Universidad Autónoma de Madrid; EspañaFil: Elahi, Pascal. The University Of Nottingham; Reino Unido. Shanghai Astronomical Observatory; ChinaFil: Falck, Bridget. University of Portsmouth; Reino UnidoFil: Gottlober, Stefan. Leibniz-Institut fur Astrophysik Potsdam; AlemaniaFil: Han, Jiaxin. Shanghai Astronomical Observatory; China. Chinese Academy of Sciences; República de China. University Of Durham; Reino UnidoFil: Klypin, Anatoly. New Mexico State University; Estados UnidosFil: Lukic, Zarija. Lawrence Berkeley National Laboratory; Estados Unidos. Los Alamos National High Magnetic Field Laboratory; Estados UnidosFil: Maciejewski, Michal. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; AlemaniaFil: McBride, Cameron K.. Vanderbilt University; Estados UnidosFil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Muldrew, Stuart I.. The University Of Nottingham; Reino UnidoFil: Neyrinck, Mark. University Johns Hopkins; Estados UnidosFil: Onions, Julian. The University Of Nottingham; Reino UnidoFil: Planelles, Susana. Università degli Studi di Trieste; ItaliaFil: Potter, Doug. Universitat Zurich; SuizaFil: Quilis, Vicent. Universidad de Valencia; EspañaFil: Rasera, Yann. Université Paris Diderot - Paris 7; FranciaFil: Ricker, Paul M.. University of Illinois at Urbana; Estados UnidosFil: Roy, Fabrice. Université Paris Diderot - Paris 7; FranciaFil: Ruiz, Andrés Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; ArgentinaFil: Springel, Volker. Heidelberg Institute for Theoretical Studies; AlemaniaFil: Stadel, Joachim. Universitat Zurich; SuizaFil: Sutter, P. M.. University of Illinois at Urbana; Estados Unidos. Ohio State University; Estados Unidos. Institut d’Astrophysique de Paris; FranciaFil: Tweed, Dylan. The Hebrew University Of Jerusalem; IsraelFil: Zemp, Marcel. Peking University; República de ChinaOxford University Press2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29314Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; et al.; Structure finding in cosmological simulations: the state of affairs; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 435; 2; 10-2013; 1618-16580035-8711CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt1403info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/435/2/1618/1043579info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1304.0585info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:19Zoai:ri.conicet.gov.ar:11336/29314instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:19.509CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Structure finding in cosmological simulations: the state of affairs
title Structure finding in cosmological simulations: the state of affairs
spellingShingle Structure finding in cosmological simulations: the state of affairs
Knebe, Alexander
GALAXIES EVOLUTION
GALAXIES HALOES
LUMINOSITY FUNCTION
GALAXIES STATISTICS
title_short Structure finding in cosmological simulations: the state of affairs
title_full Structure finding in cosmological simulations: the state of affairs
title_fullStr Structure finding in cosmological simulations: the state of affairs
title_full_unstemmed Structure finding in cosmological simulations: the state of affairs
title_sort Structure finding in cosmological simulations: the state of affairs
dc.creator.none.fl_str_mv Knebe, Alexander
Pearce, Frazer R.
Lux, Hanni
Ascasibar, Yago
Behroozi, Peter
Casado, Javier
Corbett Moran, Christine
Diemand, Juerg
Dolag, Klaus
Dominguez Tenreiro, Rosa
Elahi, Pascal
Falck, Bridget
Gottlober, Stefan
Han, Jiaxin
Klypin, Anatoly
Lukic, Zarija
Maciejewski, Michal
McBride, Cameron K.
Merchan, Manuel Enrique
Muldrew, Stuart I.
Neyrinck, Mark
Onions, Julian
Planelles, Susana
Potter, Doug
Quilis, Vicent
Rasera, Yann
Ricker, Paul M.
Roy, Fabrice
Ruiz, Andrés Nicolás
Sgró, Mario Agustín
Springel, Volker
Stadel, Joachim
Sutter, P. M.
Tweed, Dylan
Zemp, Marcel
author Knebe, Alexander
author_facet Knebe, Alexander
Pearce, Frazer R.
Lux, Hanni
Ascasibar, Yago
Behroozi, Peter
Casado, Javier
Corbett Moran, Christine
Diemand, Juerg
Dolag, Klaus
Dominguez Tenreiro, Rosa
Elahi, Pascal
Falck, Bridget
Gottlober, Stefan
Han, Jiaxin
Klypin, Anatoly
Lukic, Zarija
Maciejewski, Michal
McBride, Cameron K.
Merchan, Manuel Enrique
Muldrew, Stuart I.
Neyrinck, Mark
Onions, Julian
Planelles, Susana
Potter, Doug
Quilis, Vicent
Rasera, Yann
Ricker, Paul M.
Roy, Fabrice
Ruiz, Andrés Nicolás
Sgró, Mario Agustín
Springel, Volker
Stadel, Joachim
Sutter, P. M.
Tweed, Dylan
Zemp, Marcel
author_role author
author2 Pearce, Frazer R.
Lux, Hanni
Ascasibar, Yago
Behroozi, Peter
Casado, Javier
Corbett Moran, Christine
Diemand, Juerg
Dolag, Klaus
Dominguez Tenreiro, Rosa
Elahi, Pascal
Falck, Bridget
Gottlober, Stefan
Han, Jiaxin
Klypin, Anatoly
Lukic, Zarija
Maciejewski, Michal
McBride, Cameron K.
Merchan, Manuel Enrique
Muldrew, Stuart I.
Neyrinck, Mark
Onions, Julian
Planelles, Susana
Potter, Doug
Quilis, Vicent
Rasera, Yann
Ricker, Paul M.
Roy, Fabrice
Ruiz, Andrés Nicolás
Sgró, Mario Agustín
Springel, Volker
Stadel, Joachim
Sutter, P. M.
Tweed, Dylan
Zemp, Marcel
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv GALAXIES EVOLUTION
GALAXIES HALOES
LUMINOSITY FUNCTION
GALAXIES STATISTICS
topic GALAXIES EVOLUTION
GALAXIES HALOES
LUMINOSITY FUNCTION
GALAXIES STATISTICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the ‘halo finder comparison project’: we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and – to a minor extent – the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
Fil: Knebe, Alexander. Universidad Autónoma de Madrid; España
Fil: Pearce, Frazer R.. The University Of Nottingham; Reino Unido
Fil: Lux, Hanni. The University Of Nottingham; Reino Unido. University of Oxford; Reino Unido
Fil: Ascasibar, Yago. Universidad Autónoma de Madrid; España
Fil: Behroozi, Peter. Kavli Institute for Particle Astrophysics and Cosmology; Estados Unidos. University of Stanford; Estados Unidos
Fil: Casado, Javier. Universidad Autónoma de Madrid; España
Fil: Corbett Moran, Christine. Universitat Zurich; Suiza
Fil: Diemand, Juerg. Universitat Zurich; Suiza
Fil: Dolag, Klaus. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: Dominguez Tenreiro, Rosa. Universidad Autónoma de Madrid; España
Fil: Elahi, Pascal. The University Of Nottingham; Reino Unido. Shanghai Astronomical Observatory; China
Fil: Falck, Bridget. University of Portsmouth; Reino Unido
Fil: Gottlober, Stefan. Leibniz-Institut fur Astrophysik Potsdam; Alemania
Fil: Han, Jiaxin. Shanghai Astronomical Observatory; China. Chinese Academy of Sciences; República de China. University Of Durham; Reino Unido
Fil: Klypin, Anatoly. New Mexico State University; Estados Unidos
Fil: Lukic, Zarija. Lawrence Berkeley National Laboratory; Estados Unidos. Los Alamos National High Magnetic Field Laboratory; Estados Unidos
Fil: Maciejewski, Michal. Gobierno de la Republica Federal de Alemania. Max Planck Institut Fur Astrophysik; Alemania
Fil: McBride, Cameron K.. Vanderbilt University; Estados Unidos
Fil: Merchan, Manuel Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Muldrew, Stuart I.. The University Of Nottingham; Reino Unido
Fil: Neyrinck, Mark. University Johns Hopkins; Estados Unidos
Fil: Onions, Julian. The University Of Nottingham; Reino Unido
Fil: Planelles, Susana. Università degli Studi di Trieste; Italia
Fil: Potter, Doug. Universitat Zurich; Suiza
Fil: Quilis, Vicent. Universidad de Valencia; España
Fil: Rasera, Yann. Université Paris Diderot - Paris 7; Francia
Fil: Ricker, Paul M.. University of Illinois at Urbana; Estados Unidos
Fil: Roy, Fabrice. Université Paris Diderot - Paris 7; Francia
Fil: Ruiz, Andrés Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Sgró, Mario Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina
Fil: Springel, Volker. Heidelberg Institute for Theoretical Studies; Alemania
Fil: Stadel, Joachim. Universitat Zurich; Suiza
Fil: Sutter, P. M.. University of Illinois at Urbana; Estados Unidos. Ohio State University; Estados Unidos. Institut d’Astrophysique de Paris; Francia
Fil: Tweed, Dylan. The Hebrew University Of Jerusalem; Israel
Fil: Zemp, Marcel. Peking University; República de China
description The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the ‘halo finder comparison project’: we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and – to a minor extent – the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29314
Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; et al.; Structure finding in cosmological simulations: the state of affairs; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 435; 2; 10-2013; 1618-1658
0035-8711
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29314
identifier_str_mv Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; et al.; Structure finding in cosmological simulations: the state of affairs; Oxford University Press; Monthly Notices of the Royal Astronomical Society; 435; 2; 10-2013; 1618-1658
0035-8711
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1093/mnras/stt1403
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/mnras/article/435/2/1618/1043579
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1304.0585
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269998587838464
score 13.13397