Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds

Autores
Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; Sommadossi, Silvana Andrea; Fries, Suzana G
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram
Fil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Palumbo, Mauro. Ruhr Universität Bochum; Alemania
Fil: Koßmann, Jörg. Ruhr Universität Bochum; Alemania
Fil: Hammerschmidt, Thomas. Ruhr Universität Bochum; Alemania
Fil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Fries, Suzana G. Ruhr Universität Bochum; Alemania
Materia
CALPHAD
DFT
MULTIPHASE EQUILIBRIA
THERMODYNAMIC PROPERTIES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/143636

id CONICETDig_437dfad19a0aa987050ae33143e9403b
oai_identifier_str oai:ri.conicet.gov.ar:11336/143636
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compoundsTumminello, Silvana Deisy PaulinaPalumbo, MauroKoßmann, JörgHammerschmidt, ThomasAlonso, Paula ReginaSommadossi, Silvana AndreaFries, Suzana GCALPHADDFTMULTIPHASE EQUILIBRIATHERMODYNAMIC PROPERTIEShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagramFil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Palumbo, Mauro. Ruhr Universität Bochum; AlemaniaFil: Koßmann, Jörg. Ruhr Universität Bochum; AlemaniaFil: Hammerschmidt, Thomas. Ruhr Universität Bochum; AlemaniaFil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Fries, Suzana G. Ruhr Universität Bochum; AlemaniaMultidisciplinary Digital Publishing Institute2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143636Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-192075-4701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4701/10/9/1142info:eu-repo/semantics/altIdentifier/doi/doi:10.3390/met10091142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:17Zoai:ri.conicet.gov.ar:11336/143636instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:17.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
title Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
spellingShingle Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
Tumminello, Silvana Deisy Paulina
CALPHAD
DFT
MULTIPHASE EQUILIBRIA
THERMODYNAMIC PROPERTIES
title_short Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
title_full Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
title_fullStr Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
title_full_unstemmed Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
title_sort Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
dc.creator.none.fl_str_mv Tumminello, Silvana Deisy Paulina
Palumbo, Mauro
Koßmann, Jörg
Hammerschmidt, Thomas
Alonso, Paula Regina
Sommadossi, Silvana Andrea
Fries, Suzana G
author Tumminello, Silvana Deisy Paulina
author_facet Tumminello, Silvana Deisy Paulina
Palumbo, Mauro
Koßmann, Jörg
Hammerschmidt, Thomas
Alonso, Paula Regina
Sommadossi, Silvana Andrea
Fries, Suzana G
author_role author
author2 Palumbo, Mauro
Koßmann, Jörg
Hammerschmidt, Thomas
Alonso, Paula Regina
Sommadossi, Silvana Andrea
Fries, Suzana G
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv CALPHAD
DFT
MULTIPHASE EQUILIBRIA
THERMODYNAMIC PROPERTIES
topic CALPHAD
DFT
MULTIPHASE EQUILIBRIA
THERMODYNAMIC PROPERTIES
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram
Fil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Palumbo, Mauro. Ruhr Universität Bochum; Alemania
Fil: Koßmann, Jörg. Ruhr Universität Bochum; Alemania
Fil: Hammerschmidt, Thomas. Ruhr Universität Bochum; Alemania
Fil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Fries, Suzana G. Ruhr Universität Bochum; Alemania
description The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram
publishDate 2020
dc.date.none.fl_str_mv 2020-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/143636
Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-19
2075-4701
CONICET Digital
CONICET
url http://hdl.handle.net/11336/143636
identifier_str_mv Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-19
2075-4701
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4701/10/9/1142
info:eu-repo/semantics/altIdentifier/doi/doi:10.3390/met10091142
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613526760456192
score 13.070432