Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds
- Autores
- Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; Sommadossi, Silvana Andrea; Fries, Suzana G
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram
Fil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Palumbo, Mauro. Ruhr Universität Bochum; Alemania
Fil: Koßmann, Jörg. Ruhr Universität Bochum; Alemania
Fil: Hammerschmidt, Thomas. Ruhr Universität Bochum; Alemania
Fil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina
Fil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina
Fil: Fries, Suzana G. Ruhr Universität Bochum; Alemania - Materia
-
CALPHAD
DFT
MULTIPHASE EQUILIBRIA
THERMODYNAMIC PROPERTIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/143636
Ver los metadatos del registro completo
id |
CONICETDig_437dfad19a0aa987050ae33143e9403b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/143636 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compoundsTumminello, Silvana Deisy PaulinaPalumbo, MauroKoßmann, JörgHammerschmidt, ThomasAlonso, Paula ReginaSommadossi, Silvana AndreaFries, Suzana GCALPHADDFTMULTIPHASE EQUILIBRIATHERMODYNAMIC PROPERTIEShttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagramFil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Palumbo, Mauro. Ruhr Universität Bochum; AlemaniaFil: Koßmann, Jörg. Ruhr Universität Bochum; AlemaniaFil: Hammerschmidt, Thomas. Ruhr Universität Bochum; AlemaniaFil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; ArgentinaFil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; ArgentinaFil: Fries, Suzana G. Ruhr Universität Bochum; AlemaniaMultidisciplinary Digital Publishing Institute2020-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/143636Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-192075-4701CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4701/10/9/1142info:eu-repo/semantics/altIdentifier/doi/doi:10.3390/met10091142info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:49:17Zoai:ri.conicet.gov.ar:11336/143636instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:49:17.377CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
title |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
spellingShingle |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds Tumminello, Silvana Deisy Paulina CALPHAD DFT MULTIPHASE EQUILIBRIA THERMODYNAMIC PROPERTIES |
title_short |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
title_full |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
title_fullStr |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
title_full_unstemmed |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
title_sort |
Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds |
dc.creator.none.fl_str_mv |
Tumminello, Silvana Deisy Paulina Palumbo, Mauro Koßmann, Jörg Hammerschmidt, Thomas Alonso, Paula Regina Sommadossi, Silvana Andrea Fries, Suzana G |
author |
Tumminello, Silvana Deisy Paulina |
author_facet |
Tumminello, Silvana Deisy Paulina Palumbo, Mauro Koßmann, Jörg Hammerschmidt, Thomas Alonso, Paula Regina Sommadossi, Silvana Andrea Fries, Suzana G |
author_role |
author |
author2 |
Palumbo, Mauro Koßmann, Jörg Hammerschmidt, Thomas Alonso, Paula Regina Sommadossi, Silvana Andrea Fries, Suzana G |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
CALPHAD DFT MULTIPHASE EQUILIBRIA THERMODYNAMIC PROPERTIES |
topic |
CALPHAD DFT MULTIPHASE EQUILIBRIA THERMODYNAMIC PROPERTIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.5 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram Fil: Tumminello, Silvana Deisy Paulina. Universidad Nacional del Comahue; Argentina. Universidad Nacional de San Martín; Argentina. Ruhr Universität Bochum; Alemania. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Palumbo, Mauro. Ruhr Universität Bochum; Alemania Fil: Koßmann, Jörg. Ruhr Universität Bochum; Alemania Fil: Hammerschmidt, Thomas. Ruhr Universität Bochum; Alemania Fil: Alonso, Paula Regina. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Instituto Sabato; Argentina Fil: Sommadossi, Silvana Andrea. Universidad Nacional del Comahue; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Confluencia. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería. Universidad Nacional del Comahue. Instituto de Investigación En Tecnologías y Ciencias de la Ingeniería; Argentina Fil: Fries, Suzana G. Ruhr Universität Bochum; Alemania |
description |
The Al–Ni system has been intensively studied both experimentally and theoretically. Previous first-principles calculations based on density-functional theory (DFT) typically investigate the stable phases of this system in their experimental stoichiometry. In this work, we present DFT calculations for the Al–Ni system that cover stable and metastable phases across the whole composition range for each phase. The considered metastable phases are relevant for applications as they are observed in engineering alloys based on Al–Ni. To model the Gibbs energies of solid phases of the Al–Ni system, we combine our DFT calculations with the compound energy formalism (CEF) that takes the Bragg–Williams–Gorsky approximation for the configurational entropy. Our results indicate that the majority of the investigated configurations have negative energy of formation with respect to Al fcc and Ni fcc. The calculated molar volumes for all investigated phases show negative deviations from Zen’s law. The thermodynamic properties at finite temperatures of individual phases allow one to predict the configurational contributions to the Gibbs energy. By applying a fully predictive approach without excess parameters, an acceptable topology of the DFT-based equilibrium phase diagram is obtained at low and intermediate temperatures. Further contributions can be added to improve the predictability of the method, such as phonons or going beyond the Bragg–Williams–Gorsky approximation that overestimates the stability range of the ordered phases. This is clearly demonstrated in the fcc order/disorder predicted metastable phase diagram |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/143636 Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-19 2075-4701 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/143636 |
identifier_str_mv |
Tumminello, Silvana Deisy Paulina; Palumbo, Mauro; Koßmann, Jörg; Hammerschmidt, Thomas; Alonso, Paula Regina; et al.; Dft-cef approach for the thermodynamic properties and volume of stable and metastable al–ni compounds; Multidisciplinary Digital Publishing Institute; Metals; 10; 9; 8-2020; 1-19 2075-4701 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2075-4701/10/9/1142 info:eu-repo/semantics/altIdentifier/doi/doi:10.3390/met10091142 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613526760456192 |
score |
13.070432 |