Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites
- Autores
- Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables.
Fil: Verdini, Roxana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Rosario; Argentina
Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Nakai, S.. University of British Columbia; Canadá - Materia
-
Multivariate Analysis
Neural Networks
Cheese Ripening
Freezing - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/26143
Ver los metadatos del registro completo
id |
CONICETDig_4352f1192fc0f40f509ea42c736dcdb9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/26143 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sitesVerdini, Roxana AndreaZorrilla, SusanaRubiolo, Amelia CatalinaNakai, S.Multivariate AnalysisNeural NetworksCheese RipeningFreezinghttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables.Fil: Verdini, Roxana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Rosario; ArgentinaFil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Nakai, S.. University of British Columbia; CanadáElsevier Science2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/26143Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.; Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 86; 1; 12-2007; 60-670169-7439CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743906001663info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2006.08.006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:51:31Zoai:ri.conicet.gov.ar:11336/26143instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:51:32.238CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
title |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
spellingShingle |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites Verdini, Roxana Andrea Multivariate Analysis Neural Networks Cheese Ripening Freezing |
title_short |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
title_full |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
title_fullStr |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
title_full_unstemmed |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
title_sort |
Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites |
dc.creator.none.fl_str_mv |
Verdini, Roxana Andrea Zorrilla, Susana Rubiolo, Amelia Catalina Nakai, S. |
author |
Verdini, Roxana Andrea |
author_facet |
Verdini, Roxana Andrea Zorrilla, Susana Rubiolo, Amelia Catalina Nakai, S. |
author_role |
author |
author2 |
Zorrilla, Susana Rubiolo, Amelia Catalina Nakai, S. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Multivariate Analysis Neural Networks Cheese Ripening Freezing |
topic |
Multivariate Analysis Neural Networks Cheese Ripening Freezing |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables. Fil: Verdini, Roxana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. Universidad Nacional de Rosario; Argentina Fil: Zorrilla, Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Rubiolo, Amelia Catalina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Nakai, S.. University of British Columbia; Canadá |
description |
The objective of the present work was to compare multivariate statistical methods for the classification of Port Salut Argentino cheese samples based on ripening time (1, 6, 13, 27, and 56 days), storage conditions (traditionally ripened and ripened after frozen storage) and sampling sites (internal and external zones) using the contents of caseins, peptides and amino acids measured by chromatographic analysis as well as textural and physical parameters. In particular, two linear methods, principal component analysis (PCA) and principal component similarity (PCS), and a nonlinear method, the Kohonen self-organizing artificial neural network (Kohonen ANN), were compared. The two linear methods showed the same grouping of cheese samples according to ripening time, sampling site and storage condition. These methods are closely related in their mathematical basis and the similar grouping showed by both methods can be explained by the fact that the first three principal components explained 89.3% of the data set variation. The non-linear Kohonen ANN uses a mathematical procedure completely different from PCA; however, only slight differences were observed in the grouping of cheese samples. Those differences may be related to the weight that each model gives to every variable. One interesting feature of Kohonen ANN is that weight maps (contour plots) sometimes are superior to principal component loadings (vectors) for the understanding of relationships between the groups and the original variables. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/26143 Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.; Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 86; 1; 12-2007; 60-67 0169-7439 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/26143 |
identifier_str_mv |
Verdini, Roxana Andrea; Zorrilla, Susana; Rubiolo, Amelia Catalina; Nakai, S.; Multivariate statistical methods for Port Salut Argentino cheese analysis based on ripening time, storage conditions, and sampling sites; Elsevier Science; Chemometrics and Intelligent Laboratory Systems; 86; 1; 12-2007; 60-67 0169-7439 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0169743906001663 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chemolab.2006.08.006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269100454182912 |
score |
13.13397 |