Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence

Autores
Roy, Sohom; Chhiber, R.; Dasso, Sergio Ricardo; Ruiz, Maria Emilia; Matthaeus, W .H.
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A major development underlying hydrodynamic turbulence theory is the similarity decay hypothesis due to von Karman and Howarth, here extended empirically to plasma turbulence in the solar wind. In similarity decay the second-order correlation experiences a continuous transformation based on a universal functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly. Here, we analyze an ensemble of Elsässer autocorrelation functions computed from Advanced Composition Explorer data at 1 astronomical unit (AU), and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity form of the type anticipated from von Karman's hypothesis applied to weakly compressive magnetohydrodynamic turbulence. This provides a firm empirical basis for employing the similarity decay hypothesis to the Elsässer correlations that represent the incompressive turbulence cascade. This approach is of substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and subgrid-scale dynamical modeling.
Fil: Roy, Sohom. University Of Delaware; Estados Unidos
Fil: Chhiber, R.. University Of Delaware; Estados Unidos
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Ruiz, Maria Emilia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Matthaeus, W .H.. University Of Delaware; Estados Unidos
Materia
Space Weather
Solar Wind
Turbulence
MHD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/214470

id CONICETDig_42b1a98bbc04cf21809982ad7d14c2e6
oai_identifier_str oai:ri.conicet.gov.ar:11336/214470
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Von Karman correlation similarity in solar wind magnetohydrodynamic turbulenceRoy, SohomChhiber, R.Dasso, Sergio RicardoRuiz, Maria EmiliaMatthaeus, W .H.Space WeatherSolar WindTurbulenceMHDhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1A major development underlying hydrodynamic turbulence theory is the similarity decay hypothesis due to von Karman and Howarth, here extended empirically to plasma turbulence in the solar wind. In similarity decay the second-order correlation experiences a continuous transformation based on a universal functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly. Here, we analyze an ensemble of Elsässer autocorrelation functions computed from Advanced Composition Explorer data at 1 astronomical unit (AU), and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity form of the type anticipated from von Karman's hypothesis applied to weakly compressive magnetohydrodynamic turbulence. This provides a firm empirical basis for employing the similarity decay hypothesis to the Elsässer correlations that represent the incompressive turbulence cascade. This approach is of substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and subgrid-scale dynamical modeling.Fil: Roy, Sohom. University Of Delaware; Estados UnidosFil: Chhiber, R.. University Of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Ruiz, Maria Emilia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Matthaeus, W .H.. University Of Delaware; Estados UnidosAmerican Physical Society2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/214470Roy, Sohom; Chhiber, R.; Dasso, Sergio Ricardo; Ruiz, Maria Emilia; Matthaeus, W .H.; Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence; American Physical Society; Physical Review E; 105; 4; 4-2022; 1-72470-00452470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.105.045204info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:21:43Zoai:ri.conicet.gov.ar:11336/214470instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:21:43.829CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
title Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
spellingShingle Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
Roy, Sohom
Space Weather
Solar Wind
Turbulence
MHD
title_short Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
title_full Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
title_fullStr Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
title_full_unstemmed Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
title_sort Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence
dc.creator.none.fl_str_mv Roy, Sohom
Chhiber, R.
Dasso, Sergio Ricardo
Ruiz, Maria Emilia
Matthaeus, W .H.
author Roy, Sohom
author_facet Roy, Sohom
Chhiber, R.
Dasso, Sergio Ricardo
Ruiz, Maria Emilia
Matthaeus, W .H.
author_role author
author2 Chhiber, R.
Dasso, Sergio Ricardo
Ruiz, Maria Emilia
Matthaeus, W .H.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Space Weather
Solar Wind
Turbulence
MHD
topic Space Weather
Solar Wind
Turbulence
MHD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A major development underlying hydrodynamic turbulence theory is the similarity decay hypothesis due to von Karman and Howarth, here extended empirically to plasma turbulence in the solar wind. In similarity decay the second-order correlation experiences a continuous transformation based on a universal functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly. Here, we analyze an ensemble of Elsässer autocorrelation functions computed from Advanced Composition Explorer data at 1 astronomical unit (AU), and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity form of the type anticipated from von Karman's hypothesis applied to weakly compressive magnetohydrodynamic turbulence. This provides a firm empirical basis for employing the similarity decay hypothesis to the Elsässer correlations that represent the incompressive turbulence cascade. This approach is of substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and subgrid-scale dynamical modeling.
Fil: Roy, Sohom. University Of Delaware; Estados Unidos
Fil: Chhiber, R.. University Of Delaware; Estados Unidos
Fil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Ruiz, Maria Emilia. Ministerio de Defensa. Secretaria de Planeamiento. Servicio Meteorológico Nacional; Argentina. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentina
Fil: Matthaeus, W .H.. University Of Delaware; Estados Unidos
description A major development underlying hydrodynamic turbulence theory is the similarity decay hypothesis due to von Karman and Howarth, here extended empirically to plasma turbulence in the solar wind. In similarity decay the second-order correlation experiences a continuous transformation based on a universal functional form and a rescaling of energy and characteristic length. Solar wind turbulence follows many principles adapted from classical fluid turbulence, but previously this similarity property has not been examined explicitly. Here, we analyze an ensemble of Elsässer autocorrelation functions computed from Advanced Composition Explorer data at 1 astronomical unit (AU), and demonstrate explicitly that the two-point correlation functions undergo a collapse to a similarity form of the type anticipated from von Karman's hypothesis applied to weakly compressive magnetohydrodynamic turbulence. This provides a firm empirical basis for employing the similarity decay hypothesis to the Elsässer correlations that represent the incompressive turbulence cascade. This approach is of substantial utility in space turbulence data analysis, and for adopting von Karman-type heating rates in global and subgrid-scale dynamical modeling.
publishDate 2022
dc.date.none.fl_str_mv 2022-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/214470
Roy, Sohom; Chhiber, R.; Dasso, Sergio Ricardo; Ruiz, Maria Emilia; Matthaeus, W .H.; Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence; American Physical Society; Physical Review E; 105; 4; 4-2022; 1-7
2470-0045
2470-0053
CONICET Digital
CONICET
url http://hdl.handle.net/11336/214470
identifier_str_mv Roy, Sohom; Chhiber, R.; Dasso, Sergio Ricardo; Ruiz, Maria Emilia; Matthaeus, W .H.; Von Karman correlation similarity in solar wind magnetohydrodynamic turbulence; American Physical Society; Physical Review E; 105; 4; 4-2022; 1-7
2470-0045
2470-0053
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.105.045204
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781724386656256
score 12.982451