On period doubling bifurcations of cycles and the harmonic balance method
- Autores
- Itovich, Griselda Rut; Moiola, Jorge Luis
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method.
Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; Argentina
Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina - Materia
-
Period-doubling
Bifurcation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/105138
Ver los metadatos del registro completo
id |
CONICETDig_418f5657f5a13c5bc91f63b878f67cbb |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/105138 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On period doubling bifurcations of cycles and the harmonic balance methodItovich, Griselda RutMoiola, Jorge LuisPeriod-doublingBifurcationhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method.Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; ArgentinaFil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaPergamon-Elsevier Science Ltd2006-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/105138Itovich, Griselda Rut; Moiola, Jorge Luis; On period doubling bifurcations of cycles and the harmonic balance method; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 27; 3; 2-2006; 647-6650960-0779CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960077905003929info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2005.04.061info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:37:13Zoai:ri.conicet.gov.ar:11336/105138instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:37:14.005CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On period doubling bifurcations of cycles and the harmonic balance method |
title |
On period doubling bifurcations of cycles and the harmonic balance method |
spellingShingle |
On period doubling bifurcations of cycles and the harmonic balance method Itovich, Griselda Rut Period-doubling Bifurcation |
title_short |
On period doubling bifurcations of cycles and the harmonic balance method |
title_full |
On period doubling bifurcations of cycles and the harmonic balance method |
title_fullStr |
On period doubling bifurcations of cycles and the harmonic balance method |
title_full_unstemmed |
On period doubling bifurcations of cycles and the harmonic balance method |
title_sort |
On period doubling bifurcations of cycles and the harmonic balance method |
dc.creator.none.fl_str_mv |
Itovich, Griselda Rut Moiola, Jorge Luis |
author |
Itovich, Griselda Rut |
author_facet |
Itovich, Griselda Rut Moiola, Jorge Luis |
author_role |
author |
author2 |
Moiola, Jorge Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
Period-doubling Bifurcation |
topic |
Period-doubling Bifurcation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method. Fil: Itovich, Griselda Rut. Universidad Nacional del Comahue; Argentina Fil: Moiola, Jorge Luis. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina |
description |
This works attempts to give quasi-analytical expressions for subharmonic solutions appearing in the vicinity of a Hopf bifurcation. Starting with well-known tools as the graphical Hopf method for recovering the periodic branch emerging from classical Hopf bifurcation, precise frequency and amplitude estimations of the limit cycle can be obtained. These results allow to attain approximations for period doubling orbits by means of harmonic balance techniques, whose accuracy is established by comparison of Floquet multipliers with continuation software packages. Setting up a few coefficients, the proposed methodology yields to approximate solutions that result from a second period doubling bifurcation of cycles and to extend the validity limits of the graphical Hopf method. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/105138 Itovich, Griselda Rut; Moiola, Jorge Luis; On period doubling bifurcations of cycles and the harmonic balance method; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 27; 3; 2-2006; 647-665 0960-0779 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/105138 |
identifier_str_mv |
Itovich, Griselda Rut; Moiola, Jorge Luis; On period doubling bifurcations of cycles and the harmonic balance method; Pergamon-Elsevier Science Ltd; Chaos, Solitons And Fractals; 27; 3; 2-2006; 647-665 0960-0779 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0960077905003929 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.chaos.2005.04.061 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614392191123456 |
score |
13.070432 |