Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer

Autores
Alexa, Patrick; Lombardi, Juan Manuel; Abufager, Paula Natalia; Busnengo, Heriberto Fabio; Grumelli, Doris Elda; Vyas, Vijay S.; Haase, Frederik; Lotsch, Bettina V.; Gutzler, Rico; Kern, Klaus
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.
Fil: Alexa, Patrick. Max Planck Institute for Solid State Research; Alemania
Fil: Lombardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Abufager, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Vyas, Vijay S.. Max Planck Institute for Solid State Research; Alemania. Marquette University; Estados Unidos
Fil: Haase, Frederik. Max Planck Institute for Solid State Research; Alemania. Kyoto University. Institute for Integrated Cell-Material Sciences; Japón
Fil: Lotsch, Bettina V.. Max Planck Institute for Solid State Research; Alemania. University of Munich. Department of Chemistry; Alemania
Fil: Gutzler, Rico. Max Planck Institute for Solid State Research; Alemania
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. École Polytechnique Fédérale de Lausanne; Suiza
Materia
DENSITY FUNCTIONAL THEORY
HYBRID CATALYST
HYDROGEN EVOLUTION REACTION
POLYMERS
SURFACE CHEMISTRY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/141742

id CONICETDig_418d32bc8bf61af37fe6b4cbbd80096b
oai_identifier_str oai:ri.conicet.gov.ar:11336/141742
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymerAlexa, PatrickLombardi, Juan ManuelAbufager, Paula NataliaBusnengo, Heriberto FabioGrumelli, Doris EldaVyas, Vijay S.Haase, FrederikLotsch, Bettina V.Gutzler, RicoKern, KlausDENSITY FUNCTIONAL THEORYHYBRID CATALYSTHYDROGEN EVOLUTION REACTIONPOLYMERSSURFACE CHEMISTRYhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.Fil: Alexa, Patrick. Max Planck Institute for Solid State Research; AlemaniaFil: Lombardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Abufager, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Vyas, Vijay S.. Max Planck Institute for Solid State Research; Alemania. Marquette University; Estados UnidosFil: Haase, Frederik. Max Planck Institute for Solid State Research; Alemania. Kyoto University. Institute for Integrated Cell-Material Sciences; JapónFil: Lotsch, Bettina V.. Max Planck Institute for Solid State Research; Alemania. University of Munich. Department of Chemistry; AlemaniaFil: Gutzler, Rico. Max Planck Institute for Solid State Research; AlemaniaFil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. École Polytechnique Fédérale de Lausanne; SuizaJohn Wiley & Sons Inc2020-05-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/141742Alexa, Patrick; Lombardi, Juan Manuel; Abufager, Paula Natalia; Busnengo, Heriberto Fabio; Grumelli, Doris Elda; et al.; Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer; John Wiley & Sons Inc; Angewandte Chemie; 59; 22; 25-5-2020; 8411-84151433-7851CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1002/anie.201915855info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/anie.201915855info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:13Zoai:ri.conicet.gov.ar:11336/141742instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:14.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
title Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
spellingShingle Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
Alexa, Patrick
DENSITY FUNCTIONAL THEORY
HYBRID CATALYST
HYDROGEN EVOLUTION REACTION
POLYMERS
SURFACE CHEMISTRY
title_short Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
title_full Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
title_fullStr Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
title_full_unstemmed Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
title_sort Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer
dc.creator.none.fl_str_mv Alexa, Patrick
Lombardi, Juan Manuel
Abufager, Paula Natalia
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
author Alexa, Patrick
author_facet Alexa, Patrick
Lombardi, Juan Manuel
Abufager, Paula Natalia
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
author_role author
author2 Lombardi, Juan Manuel
Abufager, Paula Natalia
Busnengo, Heriberto Fabio
Grumelli, Doris Elda
Vyas, Vijay S.
Haase, Frederik
Lotsch, Bettina V.
Gutzler, Rico
Kern, Klaus
author2_role author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv DENSITY FUNCTIONAL THEORY
HYBRID CATALYST
HYDROGEN EVOLUTION REACTION
POLYMERS
SURFACE CHEMISTRY
topic DENSITY FUNCTIONAL THEORY
HYBRID CATALYST
HYDROGEN EVOLUTION REACTION
POLYMERS
SURFACE CHEMISTRY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.
Fil: Alexa, Patrick. Max Planck Institute for Solid State Research; Alemania
Fil: Lombardi, Juan Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Abufager, Paula Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Busnengo, Heriberto Fabio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; Argentina
Fil: Grumelli, Doris Elda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; Argentina
Fil: Vyas, Vijay S.. Max Planck Institute for Solid State Research; Alemania. Marquette University; Estados Unidos
Fil: Haase, Frederik. Max Planck Institute for Solid State Research; Alemania. Kyoto University. Institute for Integrated Cell-Material Sciences; Japón
Fil: Lotsch, Bettina V.. Max Planck Institute for Solid State Research; Alemania. University of Munich. Department of Chemistry; Alemania
Fil: Gutzler, Rico. Max Planck Institute for Solid State Research; Alemania
Fil: Kern, Klaus. Max Planck Institute for Solid State Research; Alemania. École Polytechnique Fédérale de Lausanne; Suiza
description The electrochemical splitting of water holds promise for the storage of energy produced intermittently by renewable energy sources. The evolution of hydrogen currently relies on the use of platinum as a catalyst—which is scarce and expensive—and ongoing research is focused towards finding cheaper alternatives. In this context, 2D polymers grown as single layers on surfaces have emerged as porous materials with tunable chemical and electronic structures that can be used for improving the catalytic activity of metal surfaces. Here, we use designed organic molecules to fabricate covalent 2D architectures by an Ullmann-type coupling reaction on Au(111). The polymer-patterned gold electrode exhibits a hydrogen evolution reaction activity up to three times higher than that of bare gold. Through rational design of the polymer on the molecular level we engineered hydrogen evolution activity by an approach that can be easily extended to other electrocatalytic reactions.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-25
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/141742
Alexa, Patrick; Lombardi, Juan Manuel; Abufager, Paula Natalia; Busnengo, Heriberto Fabio; Grumelli, Doris Elda; et al.; Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer; John Wiley & Sons Inc; Angewandte Chemie; 59; 22; 25-5-2020; 8411-8415
1433-7851
CONICET Digital
CONICET
url http://hdl.handle.net/11336/141742
identifier_str_mv Alexa, Patrick; Lombardi, Juan Manuel; Abufager, Paula Natalia; Busnengo, Heriberto Fabio; Grumelli, Doris Elda; et al.; Enhancing hydrogen evolution activity of Au(111) in alkaline media through molecular engineering of a 2D polymer; John Wiley & Sons Inc; Angewandte Chemie; 59; 22; 25-5-2020; 8411-8415
1433-7851
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/anie.201915855
info:eu-repo/semantics/altIdentifier/url/https://onlinelibrary.wiley.com/doi/10.1002/anie.201915855
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv John Wiley & Sons Inc
publisher.none.fl_str_mv John Wiley & Sons Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613866587160576
score 13.070432