Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene

Autores
Ardenghi, Juan Sebastian; Bechthold, Pablo Ignacio; Jasen, Paula Verónica; Gonzalez, Estela Andrea; Juan, Alfredo
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order Oðℏ2Þ.
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Bechthold, Pablo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Gonzalez, Estela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Materia
Graphene
Diffusion
Sensor Gas
Fermi Velocity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/29889

id CONICETDig_415dccf5c5e89866f983328b7523f968
oai_identifier_str oai:ri.conicet.gov.ar:11336/29889
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamical diffusion and renormalization group equation for the Fermi velocity in doped grapheneArdenghi, Juan SebastianBechthold, Pablo IgnacioJasen, Paula VerónicaGonzalez, Estela AndreaJuan, AlfredoGrapheneDiffusionSensor GasFermi Velocityhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order Oðℏ2Þ.Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Bechthold, Pablo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Gonzalez, Estela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaFil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaElsevier Science2014-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/29889Ardenghi, Juan Sebastian; Bechthold, Pablo Ignacio; Jasen, Paula Verónica; Gonzalez, Estela Andrea; Juan, Alfredo; Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene; Elsevier Science; Physica B: Condensed Matter; 452; 7-2014; 92-1010921-4526CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2014.07.013info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S092145261400547Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:18:29Zoai:ri.conicet.gov.ar:11336/29889instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:18:29.529CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
title Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
spellingShingle Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
Ardenghi, Juan Sebastian
Graphene
Diffusion
Sensor Gas
Fermi Velocity
title_short Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
title_full Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
title_fullStr Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
title_full_unstemmed Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
title_sort Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene
dc.creator.none.fl_str_mv Ardenghi, Juan Sebastian
Bechthold, Pablo Ignacio
Jasen, Paula Verónica
Gonzalez, Estela Andrea
Juan, Alfredo
author Ardenghi, Juan Sebastian
author_facet Ardenghi, Juan Sebastian
Bechthold, Pablo Ignacio
Jasen, Paula Verónica
Gonzalez, Estela Andrea
Juan, Alfredo
author_role author
author2 Bechthold, Pablo Ignacio
Jasen, Paula Verónica
Gonzalez, Estela Andrea
Juan, Alfredo
author2_role author
author
author
author
dc.subject.none.fl_str_mv Graphene
Diffusion
Sensor Gas
Fermi Velocity
topic Graphene
Diffusion
Sensor Gas
Fermi Velocity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order Oðℏ2Þ.
Fil: Ardenghi, Juan Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Bechthold, Pablo Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Jasen, Paula Verónica. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Gonzalez, Estela Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
Fil: Juan, Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina
description The aim of this work is to study the electron transport in graphene with impurities by introducing a generalization of linear response theory for linear dispersion relations and spinor wave functions. Current response and density response functions are derived and computed in the Boltzmann limit showing that in the former case a minimum conductivity appears in the no-disorder limit. In turn, from the generalization of both functions, an exact relation can be obtained that relates both. Combining this result with the relation given by the continuity equation it is possible to obtain general functional behavior of the diffusion pole. Finally, a dynamical diffusion is computed in the quasistatic limit using the definition of relaxation function. A lower cutoff must be introduced to regularize infrared divergences which allow us to obtain a full renormalization group equation for the Fermi velocity, which is solved up to order Oðℏ2Þ.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/29889
Ardenghi, Juan Sebastian; Bechthold, Pablo Ignacio; Jasen, Paula Verónica; Gonzalez, Estela Andrea; Juan, Alfredo; Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene; Elsevier Science; Physica B: Condensed Matter; 452; 7-2014; 92-101
0921-4526
CONICET Digital
CONICET
url http://hdl.handle.net/11336/29889
identifier_str_mv Ardenghi, Juan Sebastian; Bechthold, Pablo Ignacio; Jasen, Paula Verónica; Gonzalez, Estela Andrea; Juan, Alfredo; Dynamical diffusion and renormalization group equation for the Fermi velocity in doped graphene; Elsevier Science; Physica B: Condensed Matter; 452; 7-2014; 92-101
0921-4526
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.physb.2014.07.013
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S092145261400547X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science
publisher.none.fl_str_mv Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846782616423890944
score 12.982451