Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis

Autores
Factorovich, Matias Hector; Gonzalez Solveyra, Estefania; Molinero, Valeria; Scherlis Perel, Damian Ariel
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water–surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity.
Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Gonzalez Solveyra, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Materia
Capillary Condesation
Nanopores
Hydriphobicity
Cavitation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/31745

id CONICETDig_408409c6e70e50f733ef0521fe2e5d7b
oai_identifier_str oai:ri.conicet.gov.ar:11336/31745
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and HysteresisFactorovich, Matias HectorGonzalez Solveyra, EstefaniaMolinero, ValeriaScherlis Perel, Damian ArielCapillary CondesationNanoporesHydriphobicityCavitationhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water–surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity.Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Gonzalez Solveyra, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Molinero, Valeria. University of Utah; Estados UnidosFil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaAmerican Chemical Society2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/31745Scherlis Perel, Damian Ariel; Molinero, Valeria; Gonzalez Solveyra, Estefania; Factorovich, Matias Hector; Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis; American Chemical Society; Journal of Physical Chemistry C; 118; 29; 6-2014; 16290-163001932-7447CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jp5000396info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jp5000396info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:52Zoai:ri.conicet.gov.ar:11336/31745instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:53.167CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
title Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
spellingShingle Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
Factorovich, Matias Hector
Capillary Condesation
Nanopores
Hydriphobicity
Cavitation
title_short Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
title_full Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
title_fullStr Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
title_full_unstemmed Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
title_sort Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis
dc.creator.none.fl_str_mv Factorovich, Matias Hector
Gonzalez Solveyra, Estefania
Molinero, Valeria
Scherlis Perel, Damian Ariel
author Factorovich, Matias Hector
author_facet Factorovich, Matias Hector
Gonzalez Solveyra, Estefania
Molinero, Valeria
Scherlis Perel, Damian Ariel
author_role author
author2 Gonzalez Solveyra, Estefania
Molinero, Valeria
Scherlis Perel, Damian Ariel
author2_role author
author
author
dc.subject.none.fl_str_mv Capillary Condesation
Nanopores
Hydriphobicity
Cavitation
topic Capillary Condesation
Nanopores
Hydriphobicity
Cavitation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water–surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity.
Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Gonzalez Solveyra, Estefania. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
Fil: Molinero, Valeria. University of Utah; Estados Unidos
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
description The motivation of this study is to elucidate how the condensation and desorption pressures in water sorption isotherms depend on the contact angle. This question is investigated for cylindrical pores of 2.8 nm diameter by means of molecular dynamics simulations in the grand canonical ensemble, in combination with the mW coarse-grained model for water. The contact angle is characterized for different sets of water–surface interactions. First, we show that desorption in open-ended pores with moderate or low water affinity, with contact angles greater or equal than 24°, is a nonactivated process in which pressure is accurately described by the Kelvin equation. Then, we explore the influence of hydrophobicity on the capillary condensation and on the width of the hysteresis loop. We find that a small increase in the contact angle may have a significant impact on the surface density and consequently on the nucleation free energy barrier. This produces a separation of the adsorption and desorption branches, exacerbating the emerging hysteresis. These results suggest that the contact angle is not as relevant as the adsorption energy in determining condensation pressure and hysteresis. Finally, we consider nonequilibrium desorption in pores with no open ends and describe how homogeneous and heterogeneous cavitation mechanisms depend on hydrophilicity.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/31745
Scherlis Perel, Damian Ariel; Molinero, Valeria; Gonzalez Solveyra, Estefania; Factorovich, Matias Hector; Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis; American Chemical Society; Journal of Physical Chemistry C; 118; 29; 6-2014; 16290-16300
1932-7447
CONICET Digital
CONICET
url http://hdl.handle.net/11336/31745
identifier_str_mv Scherlis Perel, Damian Ariel; Molinero, Valeria; Gonzalez Solveyra, Estefania; Factorovich, Matias Hector; Sorption Isotherms of Water in Nanopores: Relationship Between Hydropohobicity, Adsorption Pressure, and Hysteresis; American Chemical Society; Journal of Physical Chemistry C; 118; 29; 6-2014; 16290-16300
1932-7447
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jp5000396
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/jp5000396
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268822592028672
score 13.13397