The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics
- Autores
- Fiore, Julie L.; Holmstrom, Erik D.; Fiegland, Larry R.; Hodak, Jose Hector; Nesbitt, David J.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (kdock) and undocking (kundock) are obtained as a function of cation concentration, size, and valence, specifically for the series Na+, K+, Mg 2 +, Ca2 +, Co(NH3)63 +, and spermidine3 +. Increasing cation concentration accelerates k dock dramatically but achieves only a slight decrease in k undock. These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine3 +, whose weaker influence on the docking equilibria with respect to Co(NH 3)63 + can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups. © 2012 Published by Elsevier Ltd.
Fil: Fiore, Julie L.. University of Colorado; Estados Unidos
Fil: Holmstrom, Erik D.. University of Colorado; Estados Unidos
Fil: Fiegland, Larry R.. University of Colorado; Estados Unidos
Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Colorado; Estados Unidos
Fil: Nesbitt, David J.. University of Colorado; Estados Unidos - Materia
-
Counterion Condensation
Ions
Rna Folding
Single-Molecule Fret
Tetraloop-Receptor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67727
Ver los metadatos del registro completo
| id |
CONICETDig_3fe3c028d6466d732d4b0a05343beb05 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67727 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kineticsFiore, Julie L.Holmstrom, Erik D.Fiegland, Larry R.Hodak, Jose HectorNesbitt, David J.Counterion CondensationIonsRna FoldingSingle-Molecule FretTetraloop-Receptorhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (kdock) and undocking (kundock) are obtained as a function of cation concentration, size, and valence, specifically for the series Na+, K+, Mg 2 +, Ca2 +, Co(NH3)63 +, and spermidine3 +. Increasing cation concentration accelerates k dock dramatically but achieves only a slight decrease in k undock. These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine3 +, whose weaker influence on the docking equilibria with respect to Co(NH 3)63 + can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups. © 2012 Published by Elsevier Ltd.Fil: Fiore, Julie L.. University of Colorado; Estados UnidosFil: Holmstrom, Erik D.. University of Colorado; Estados UnidosFil: Fiegland, Larry R.. University of Colorado; Estados UnidosFil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Colorado; Estados UnidosFil: Nesbitt, David J.. University of Colorado; Estados UnidosAcademic Press Ltd - Elsevier Science Ltd2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67727Fiore, Julie L.; Holmstrom, Erik D.; Fiegland, Larry R.; Hodak, Jose Hector; Nesbitt, David J.; The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics; Academic Press Ltd - Elsevier Science Ltd; Journal Of Molecular Biology; 423; 2; 10-2012; 198-2160022-2836CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmb.2012.07.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002228361200558Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:11:44Zoai:ri.conicet.gov.ar:11336/67727instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:11:44.93CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| title |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| spellingShingle |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics Fiore, Julie L. Counterion Condensation Ions Rna Folding Single-Molecule Fret Tetraloop-Receptor |
| title_short |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| title_full |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| title_fullStr |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| title_full_unstemmed |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| title_sort |
The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics |
| dc.creator.none.fl_str_mv |
Fiore, Julie L. Holmstrom, Erik D. Fiegland, Larry R. Hodak, Jose Hector Nesbitt, David J. |
| author |
Fiore, Julie L. |
| author_facet |
Fiore, Julie L. Holmstrom, Erik D. Fiegland, Larry R. Hodak, Jose Hector Nesbitt, David J. |
| author_role |
author |
| author2 |
Holmstrom, Erik D. Fiegland, Larry R. Hodak, Jose Hector Nesbitt, David J. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Counterion Condensation Ions Rna Folding Single-Molecule Fret Tetraloop-Receptor |
| topic |
Counterion Condensation Ions Rna Folding Single-Molecule Fret Tetraloop-Receptor |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (kdock) and undocking (kundock) are obtained as a function of cation concentration, size, and valence, specifically for the series Na+, K+, Mg 2 +, Ca2 +, Co(NH3)63 +, and spermidine3 +. Increasing cation concentration accelerates k dock dramatically but achieves only a slight decrease in k undock. These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine3 +, whose weaker influence on the docking equilibria with respect to Co(NH 3)63 + can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups. © 2012 Published by Elsevier Ltd. Fil: Fiore, Julie L.. University of Colorado; Estados Unidos Fil: Holmstrom, Erik D.. University of Colorado; Estados Unidos Fil: Fiegland, Larry R.. University of Colorado; Estados Unidos Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Colorado; Estados Unidos Fil: Nesbitt, David J.. University of Colorado; Estados Unidos |
| description |
For RNA to fold into compact, ordered structures, it must overcome electrostatic repulsion between negatively charged phosphate groups by counterion recruitment. A physical understanding of the counterion-assisted folding process requires addressing how cations kinetically and thermodynamically control the folding equilibrium for each tertiary interaction in a full-length RNA. In this work, single-molecule FRET (fluorescence resonance energy transfer) techniques are exploited to isolate and explore the cation-concentration-dependent kinetics for formation of a ubiquitous RNA tertiary interaction, that is, the docking/undocking of a GAAA tetraloop with its 11-nt receptor. Rate constants for docking (kdock) and undocking (kundock) are obtained as a function of cation concentration, size, and valence, specifically for the series Na+, K+, Mg 2 +, Ca2 +, Co(NH3)63 +, and spermidine3 +. Increasing cation concentration accelerates k dock dramatically but achieves only a slight decrease in k undock. These results can be kinetically modeled using parallel cation-dependent and cation-independent docking pathways, which allows for isolation of the folding kinetics from the interaction energetics of the cations with the undocked and docked states, respectively. This analysis reveals a preferential interaction of the cations with the transition state and docked state as compared to the undocked RNA, with the ion-RNA interaction strength growing with cation valence. However, the corresponding number of cations that are taken up by the RNA upon folding decreases with charge density of the cation. The only exception to these behaviors is spermidine3 +, whose weaker influence on the docking equilibria with respect to Co(NH 3)63 + can be ascribed to steric effects preventing complete neutralization of the RNA phosphate groups. © 2012 Published by Elsevier Ltd. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67727 Fiore, Julie L.; Holmstrom, Erik D.; Fiegland, Larry R.; Hodak, Jose Hector; Nesbitt, David J.; The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics; Academic Press Ltd - Elsevier Science Ltd; Journal Of Molecular Biology; 423; 2; 10-2012; 198-216 0022-2836 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/67727 |
| identifier_str_mv |
Fiore, Julie L.; Holmstrom, Erik D.; Fiegland, Larry R.; Hodak, Jose Hector; Nesbitt, David J.; The role of counterion valence and size in GAAA tetraloop-receptor docking/undocking kinetics; Academic Press Ltd - Elsevier Science Ltd; Journal Of Molecular Biology; 423; 2; 10-2012; 198-216 0022-2836 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmb.2012.07.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S002228361200558X |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782510875279360 |
| score |
12.982451 |