Avalanche-size distributions in mean-field plastic yielding models

Autores
Jagla, Eduardo Alberto
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We discuss the size distribution N(S) of avalanches occurring at the yielding transition of mean-field (i.e., Hebraud-Lequeux) models of amorphous solids. The size distribution follows a power law dependence of the form N(S)∼S-τ. However (contrary to what is found in its depinning counterpart), the value of τ depends on details of the dynamic protocol used. For random triggering of avalanches we recover the τ=3/2 exponent typical of mean-field models, which, in particular, is valid for the depinning case. However, for the physically relevant case of external loading through a quasistatic increase of applied strain, a smaller exponent (close to 1) is obtained. This result is rationalized by mapping the problem to an effective random walk in the presence of a moving absorbing boundary.
Fil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
Materia
AVALANCHES
PLASTICITY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/58441

id CONICETDig_3ef7361af21c8647100ccde86d1a1d41
oai_identifier_str oai:ri.conicet.gov.ar:11336/58441
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Avalanche-size distributions in mean-field plastic yielding modelsJagla, Eduardo AlbertoAVALANCHESPLASTICITYhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We discuss the size distribution N(S) of avalanches occurring at the yielding transition of mean-field (i.e., Hebraud-Lequeux) models of amorphous solids. The size distribution follows a power law dependence of the form N(S)∼S-τ. However (contrary to what is found in its depinning counterpart), the value of τ depends on details of the dynamic protocol used. For random triggering of avalanches we recover the τ=3/2 exponent typical of mean-field models, which, in particular, is valid for the depinning case. However, for the physically relevant case of external loading through a quasistatic increase of applied strain, a smaller exponent (close to 1) is obtained. This result is rationalized by mapping the problem to an effective random walk in the presence of a moving absorbing boundary.Fil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaAmerican Physical Society2015-10-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/58441Jagla, Eduardo Alberto; Avalanche-size distributions in mean-field plastic yielding models; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 15-10-2015; 42135/1-42135/91539-3755CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.042135info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.042135info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.01005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:03:34Zoai:ri.conicet.gov.ar:11336/58441instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:03:34.601CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Avalanche-size distributions in mean-field plastic yielding models
title Avalanche-size distributions in mean-field plastic yielding models
spellingShingle Avalanche-size distributions in mean-field plastic yielding models
Jagla, Eduardo Alberto
AVALANCHES
PLASTICITY
title_short Avalanche-size distributions in mean-field plastic yielding models
title_full Avalanche-size distributions in mean-field plastic yielding models
title_fullStr Avalanche-size distributions in mean-field plastic yielding models
title_full_unstemmed Avalanche-size distributions in mean-field plastic yielding models
title_sort Avalanche-size distributions in mean-field plastic yielding models
dc.creator.none.fl_str_mv Jagla, Eduardo Alberto
author Jagla, Eduardo Alberto
author_facet Jagla, Eduardo Alberto
author_role author
dc.subject.none.fl_str_mv AVALANCHES
PLASTICITY
topic AVALANCHES
PLASTICITY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We discuss the size distribution N(S) of avalanches occurring at the yielding transition of mean-field (i.e., Hebraud-Lequeux) models of amorphous solids. The size distribution follows a power law dependence of the form N(S)∼S-τ. However (contrary to what is found in its depinning counterpart), the value of τ depends on details of the dynamic protocol used. For random triggering of avalanches we recover the τ=3/2 exponent typical of mean-field models, which, in particular, is valid for the depinning case. However, for the physically relevant case of external loading through a quasistatic increase of applied strain, a smaller exponent (close to 1) is obtained. This result is rationalized by mapping the problem to an effective random walk in the presence of a moving absorbing boundary.
Fil: Jagla, Eduardo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina
description We discuss the size distribution N(S) of avalanches occurring at the yielding transition of mean-field (i.e., Hebraud-Lequeux) models of amorphous solids. The size distribution follows a power law dependence of the form N(S)∼S-τ. However (contrary to what is found in its depinning counterpart), the value of τ depends on details of the dynamic protocol used. For random triggering of avalanches we recover the τ=3/2 exponent typical of mean-field models, which, in particular, is valid for the depinning case. However, for the physically relevant case of external loading through a quasistatic increase of applied strain, a smaller exponent (close to 1) is obtained. This result is rationalized by mapping the problem to an effective random walk in the presence of a moving absorbing boundary.
publishDate 2015
dc.date.none.fl_str_mv 2015-10-15
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/58441
Jagla, Eduardo Alberto; Avalanche-size distributions in mean-field plastic yielding models; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 15-10-2015; 42135/1-42135/9
1539-3755
CONICET Digital
CONICET
url http://hdl.handle.net/11336/58441
identifier_str_mv Jagla, Eduardo Alberto; Avalanche-size distributions in mean-field plastic yielding models; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 92; 4; 15-10-2015; 42135/1-42135/9
1539-3755
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journals.aps.org/pre/abstract/10.1103/PhysRevE.92.042135
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.92.042135
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1506.01005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269807505833984
score 13.13397