Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics

Autores
Santos, Jaciara C. C.; Negreiros Ribeiro, Fábio; Pedroza, Luana S.; Dalpian, Gustavo M.; Miranda, Paulo B.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Water-mineral interfaces are important for several environmental, industrial, biological, and geological processes. Gypsum, CaSO 4 ·2H 2 O, is a widespread mineral of high technological, medical, and environmental relevance, but little is known about its surface structure and its interaction with water. A molecular-level understanding of gypsum/water interface is given here by a combined experimental/theoretical study. We investigate the structure and dynamics of water adsorbed from vapor on the gypsum (010) single-crystal surface at room temperature, combining sum-frequency generation (SFG) vibrational spectroscopy experiments and ab initio molecular dynamics (AIMD) simulations. The SFG spectra of gypsum at low relative humidity (RH) show an anisotropic arrangement of structural water molecules and the presence of dangling OH groups. The AIMD simulations allow a detailed assignment of the SFG spectra and show that the cleaved (010) surface rearranges to have only 25% of the OH groups pointing away from the surface. At higher RHs, the first adsorbed water layer binds to these OH groups and forms an anisotropic arrangement, but with the amount of free OH groups significantly suppressed and without any significant diffusion. Upon adsorption of a second water layer, although the topmost layer of molecules is more disordered and dynamic than the previous one, its structure is still influenced by the gypsum surface underneath because it has a much reduced amount of free OH groups with respect to the free surface of water, and a slower surface diffusion with respect to bulk water. The theoretical results corroborate the experimental ones and provide an accurate atomic characterization of the surface structure.
Fil: Santos, Jaciara C. C.. Universidade de Sao Paulo; Brasil
Fil: Negreiros Ribeiro, Fábio. Universidade Federal Do Abc; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pedroza, Luana S.. Universidade Federal Do Abc; Brasil
Fil: Dalpian, Gustavo M.. Universidade Federal Do Abc; Brasil
Fil: Miranda, Paulo B.. Universidade de Sao Paulo; Brasil
Materia
Gypsum
SFG
DFT
Water
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/90781

id CONICETDig_3db846eccb400d8305a10f44113bf21f
oai_identifier_str oai:ri.conicet.gov.ar:11336/90781
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamicsSantos, Jaciara C. C.Negreiros Ribeiro, FábioPedroza, Luana S.Dalpian, Gustavo M.Miranda, Paulo B.GypsumSFGDFTWaterhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Water-mineral interfaces are important for several environmental, industrial, biological, and geological processes. Gypsum, CaSO 4 ·2H 2 O, is a widespread mineral of high technological, medical, and environmental relevance, but little is known about its surface structure and its interaction with water. A molecular-level understanding of gypsum/water interface is given here by a combined experimental/theoretical study. We investigate the structure and dynamics of water adsorbed from vapor on the gypsum (010) single-crystal surface at room temperature, combining sum-frequency generation (SFG) vibrational spectroscopy experiments and ab initio molecular dynamics (AIMD) simulations. The SFG spectra of gypsum at low relative humidity (RH) show an anisotropic arrangement of structural water molecules and the presence of dangling OH groups. The AIMD simulations allow a detailed assignment of the SFG spectra and show that the cleaved (010) surface rearranges to have only 25% of the OH groups pointing away from the surface. At higher RHs, the first adsorbed water layer binds to these OH groups and forms an anisotropic arrangement, but with the amount of free OH groups significantly suppressed and without any significant diffusion. Upon adsorption of a second water layer, although the topmost layer of molecules is more disordered and dynamic than the previous one, its structure is still influenced by the gypsum surface underneath because it has a much reduced amount of free OH groups with respect to the free surface of water, and a slower surface diffusion with respect to bulk water. The theoretical results corroborate the experimental ones and provide an accurate atomic characterization of the surface structure.Fil: Santos, Jaciara C. C.. Universidade de Sao Paulo; BrasilFil: Negreiros Ribeiro, Fábio. Universidade Federal Do Abc; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Pedroza, Luana S.. Universidade Federal Do Abc; BrasilFil: Dalpian, Gustavo M.. Universidade Federal Do Abc; BrasilFil: Miranda, Paulo B.. Universidade de Sao Paulo; BrasilAmerican Chemical Society2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/90781Santos, Jaciara C. C.; Negreiros Ribeiro, Fábio; Pedroza, Luana S.; Dalpian, Gustavo M.; Miranda, Paulo B.; Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics; American Chemical Society; Journal of the American Chemical Society; 140; 49; 12-2018; 17141-171520002-78631520-5126CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09907info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.8b09907info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:24Zoai:ri.conicet.gov.ar:11336/90781instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:24.62CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
title Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
spellingShingle Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
Santos, Jaciara C. C.
Gypsum
SFG
DFT
Water
title_short Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
title_full Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
title_fullStr Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
title_full_unstemmed Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
title_sort Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics
dc.creator.none.fl_str_mv Santos, Jaciara C. C.
Negreiros Ribeiro, Fábio
Pedroza, Luana S.
Dalpian, Gustavo M.
Miranda, Paulo B.
author Santos, Jaciara C. C.
author_facet Santos, Jaciara C. C.
Negreiros Ribeiro, Fábio
Pedroza, Luana S.
Dalpian, Gustavo M.
Miranda, Paulo B.
author_role author
author2 Negreiros Ribeiro, Fábio
Pedroza, Luana S.
Dalpian, Gustavo M.
Miranda, Paulo B.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Gypsum
SFG
DFT
Water
topic Gypsum
SFG
DFT
Water
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Water-mineral interfaces are important for several environmental, industrial, biological, and geological processes. Gypsum, CaSO 4 ·2H 2 O, is a widespread mineral of high technological, medical, and environmental relevance, but little is known about its surface structure and its interaction with water. A molecular-level understanding of gypsum/water interface is given here by a combined experimental/theoretical study. We investigate the structure and dynamics of water adsorbed from vapor on the gypsum (010) single-crystal surface at room temperature, combining sum-frequency generation (SFG) vibrational spectroscopy experiments and ab initio molecular dynamics (AIMD) simulations. The SFG spectra of gypsum at low relative humidity (RH) show an anisotropic arrangement of structural water molecules and the presence of dangling OH groups. The AIMD simulations allow a detailed assignment of the SFG spectra and show that the cleaved (010) surface rearranges to have only 25% of the OH groups pointing away from the surface. At higher RHs, the first adsorbed water layer binds to these OH groups and forms an anisotropic arrangement, but with the amount of free OH groups significantly suppressed and without any significant diffusion. Upon adsorption of a second water layer, although the topmost layer of molecules is more disordered and dynamic than the previous one, its structure is still influenced by the gypsum surface underneath because it has a much reduced amount of free OH groups with respect to the free surface of water, and a slower surface diffusion with respect to bulk water. The theoretical results corroborate the experimental ones and provide an accurate atomic characterization of the surface structure.
Fil: Santos, Jaciara C. C.. Universidade de Sao Paulo; Brasil
Fil: Negreiros Ribeiro, Fábio. Universidade Federal Do Abc; Brasil. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentina
Fil: Pedroza, Luana S.. Universidade Federal Do Abc; Brasil
Fil: Dalpian, Gustavo M.. Universidade Federal Do Abc; Brasil
Fil: Miranda, Paulo B.. Universidade de Sao Paulo; Brasil
description Water-mineral interfaces are important for several environmental, industrial, biological, and geological processes. Gypsum, CaSO 4 ·2H 2 O, is a widespread mineral of high technological, medical, and environmental relevance, but little is known about its surface structure and its interaction with water. A molecular-level understanding of gypsum/water interface is given here by a combined experimental/theoretical study. We investigate the structure and dynamics of water adsorbed from vapor on the gypsum (010) single-crystal surface at room temperature, combining sum-frequency generation (SFG) vibrational spectroscopy experiments and ab initio molecular dynamics (AIMD) simulations. The SFG spectra of gypsum at low relative humidity (RH) show an anisotropic arrangement of structural water molecules and the presence of dangling OH groups. The AIMD simulations allow a detailed assignment of the SFG spectra and show that the cleaved (010) surface rearranges to have only 25% of the OH groups pointing away from the surface. At higher RHs, the first adsorbed water layer binds to these OH groups and forms an anisotropic arrangement, but with the amount of free OH groups significantly suppressed and without any significant diffusion. Upon adsorption of a second water layer, although the topmost layer of molecules is more disordered and dynamic than the previous one, its structure is still influenced by the gypsum surface underneath because it has a much reduced amount of free OH groups with respect to the free surface of water, and a slower surface diffusion with respect to bulk water. The theoretical results corroborate the experimental ones and provide an accurate atomic characterization of the surface structure.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/90781
Santos, Jaciara C. C.; Negreiros Ribeiro, Fábio; Pedroza, Luana S.; Dalpian, Gustavo M.; Miranda, Paulo B.; Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics; American Chemical Society; Journal of the American Chemical Society; 140; 49; 12-2018; 17141-17152
0002-7863
1520-5126
CONICET Digital
CONICET
url http://hdl.handle.net/11336/90781
identifier_str_mv Santos, Jaciara C. C.; Negreiros Ribeiro, Fábio; Pedroza, Luana S.; Dalpian, Gustavo M.; Miranda, Paulo B.; Interaction of water with the gypsum (010) surface: Structure and dynamics from nonlinear vibrational spectroscopy and Ab initio molecular dynamics; American Chemical Society; Journal of the American Chemical Society; 140; 49; 12-2018; 17141-17152
0002-7863
1520-5126
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1021/jacs.8b09907
info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/10.1021/jacs.8b09907
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Chemical Society
publisher.none.fl_str_mv American Chemical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613141804089344
score 13.070432