A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems

Autores
Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; Nigro, Norberto Marcelo; Idelsohn, Sergio Rodolfo
Año de publicación
2025
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; Argentina
Fil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Materia
COMPUTATIONAL FLUID DYNAMICS
INCOMPRESSIBLE FLUID FLOWS
MULTISCALE METHOD
TURBULENCE MODELING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/273468

id CONICETDig_3db252848582f0067cbb1dfd597e5b23
oai_identifier_str oai:ri.conicet.gov.ar:11336/273468
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problemsGimenez, Juan MarceloSívori, Francisco MarianoLarreteguy, Axel EduardoMontaño, Sabrina InesAguerre, Horacio JavierNigro, Norberto MarceloIdelsohn, Sergio RodolfoCOMPUTATIONAL FLUID DYNAMICSINCOMPRESSIBLE FLUID FLOWSMULTISCALE METHODTURBULENCE MODELINGhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; ArgentinaFil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273468Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-390045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045782525000763info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2025.117804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:28Zoai:ri.conicet.gov.ar:11336/273468instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:28.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
title A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
spellingShingle A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
Gimenez, Juan Marcelo
COMPUTATIONAL FLUID DYNAMICS
INCOMPRESSIBLE FLUID FLOWS
MULTISCALE METHOD
TURBULENCE MODELING
title_short A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
title_full A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
title_fullStr A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
title_full_unstemmed A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
title_sort A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
dc.creator.none.fl_str_mv Gimenez, Juan Marcelo
Sívori, Francisco Mariano
Larreteguy, Axel Eduardo
Montaño, Sabrina Ines
Aguerre, Horacio Javier
Nigro, Norberto Marcelo
Idelsohn, Sergio Rodolfo
author Gimenez, Juan Marcelo
author_facet Gimenez, Juan Marcelo
Sívori, Francisco Mariano
Larreteguy, Axel Eduardo
Montaño, Sabrina Ines
Aguerre, Horacio Javier
Nigro, Norberto Marcelo
Idelsohn, Sergio Rodolfo
author_role author
author2 Sívori, Francisco Mariano
Larreteguy, Axel Eduardo
Montaño, Sabrina Ines
Aguerre, Horacio Javier
Nigro, Norberto Marcelo
Idelsohn, Sergio Rodolfo
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv COMPUTATIONAL FLUID DYNAMICS
INCOMPRESSIBLE FLUID FLOWS
MULTISCALE METHOD
TURBULENCE MODELING
topic COMPUTATIONAL FLUID DYNAMICS
INCOMPRESSIBLE FLUID FLOWS
MULTISCALE METHOD
TURBULENCE MODELING
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.3
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; Argentina
Fil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
description Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.
publishDate 2025
dc.date.none.fl_str_mv 2025-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/273468
Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-39
0045-7825
CONICET Digital
CONICET
url http://hdl.handle.net/11336/273468
identifier_str_mv Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-39
0045-7825
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045782525000763
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2025.117804
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science SA
publisher.none.fl_str_mv Elsevier Science SA
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781898868654080
score 12.982451