A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems
- Autores
- Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; Nigro, Norberto Marcelo; Idelsohn, Sergio Rodolfo
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.
Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; Argentina
Fil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina - Materia
-
COMPUTATIONAL FLUID DYNAMICS
INCOMPRESSIBLE FLUID FLOWS
MULTISCALE METHOD
TURBULENCE MODELING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273468
Ver los metadatos del registro completo
| id |
CONICETDig_3db252848582f0067cbb1dfd597e5b23 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273468 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problemsGimenez, Juan MarceloSívori, Francisco MarianoLarreteguy, Axel EduardoMontaño, Sabrina InesAguerre, Horacio JavierNigro, Norberto MarceloIdelsohn, Sergio RodolfoCOMPUTATIONAL FLUID DYNAMICSINCOMPRESSIBLE FLUID FLOWSMULTISCALE METHODTURBULENCE MODELINGhttps://purl.org/becyt/ford/2.3https://purl.org/becyt/ford/2Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements.Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; ArgentinaFil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; ArgentinaElsevier Science SA2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273468Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-390045-7825CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045782525000763info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2025.117804info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:28Zoai:ri.conicet.gov.ar:11336/273468instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:28.602CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| title |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| spellingShingle |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems Gimenez, Juan Marcelo COMPUTATIONAL FLUID DYNAMICS INCOMPRESSIBLE FLUID FLOWS MULTISCALE METHOD TURBULENCE MODELING |
| title_short |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| title_full |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| title_fullStr |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| title_full_unstemmed |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| title_sort |
A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems |
| dc.creator.none.fl_str_mv |
Gimenez, Juan Marcelo Sívori, Francisco Mariano Larreteguy, Axel Eduardo Montaño, Sabrina Ines Aguerre, Horacio Javier Nigro, Norberto Marcelo Idelsohn, Sergio Rodolfo |
| author |
Gimenez, Juan Marcelo |
| author_facet |
Gimenez, Juan Marcelo Sívori, Francisco Mariano Larreteguy, Axel Eduardo Montaño, Sabrina Ines Aguerre, Horacio Javier Nigro, Norberto Marcelo Idelsohn, Sergio Rodolfo |
| author_role |
author |
| author2 |
Sívori, Francisco Mariano Larreteguy, Axel Eduardo Montaño, Sabrina Ines Aguerre, Horacio Javier Nigro, Norberto Marcelo Idelsohn, Sergio Rodolfo |
| author2_role |
author author author author author author |
| dc.subject.none.fl_str_mv |
COMPUTATIONAL FLUID DYNAMICS INCOMPRESSIBLE FLUID FLOWS MULTISCALE METHOD TURBULENCE MODELING |
| topic |
COMPUTATIONAL FLUID DYNAMICS INCOMPRESSIBLE FLUID FLOWS MULTISCALE METHOD TURBULENCE MODELING |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.3 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements. Fil: Gimenez, Juan Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Sívori, Francisco Mariano. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Larreteguy, Axel Eduardo. Universidad Argentina de la Empresa. Facultad de Ingeniería y Ciencias Exactas; Argentina Fil: Montaño, Sabrina Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Aguerre, Horacio Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Nigro, Norberto Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Centro de Investigaciones en Métodos Computacionales. Universidad Nacional del Litoral. Centro de Investigaciones en Métodos Computacionales; Argentina |
| description |
Efficiently simulating turbulent fluid flow within a boundary layer is one of the major challengesin fluid mechanics. While skin friction may have a limited impact on drag at high Reynoldsnumbers, it plays a crucial role in determining the location of fluid separation points. Shiftsin these separation points can dramatically alter drag and lift, underscoring the importanceof accurately accounting for viscous effects. It is generally accepted that the Navier–Stokesequations contain all the necessary physical ingredients to accurately simulate fluid flows, evenin complex scenarios. With a sufficiently fine mesh, we could simulate all fluid flows withoutrelying on additional empirical approximations. However, this Direct Numerical Simulation(DNS) strategy is computationally impractical with current technology. The Pseudo-DNS (P-DNS) method offers a novel approach to solve the governing equations with the mesh refinementneeded to achieve DNS-level accuracy. The solution is divided into fine and coarse scales,and through an iterative process, both scales are solved until convergence. Computationalcost is affordable due to parametrize and solving the fine scale under different boundaryconditions in simple domains, which allows performing these calculations offline – prior toand independent of the global solution – only once. The key novelty introduced in this work isthe wall representative volume element (RVE), which models the time developing of turbulentboundary layers and its outputs can be adapted for adverse and favorable pressure gradientscenarios. The multiscale method enables accurate prediction of aerodynamic forces usingrelatively coarse meshes for boundary layers, without the need for empirical parameters orcase-specific models. Several case studies involving 2D and 3D flows over both streamlined andbluff bodies validate the ability of P-DNS to deliver reliable results while maintaining modestcomputational requirements. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273468 Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-39 0045-7825 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273468 |
| identifier_str_mv |
Gimenez, Juan Marcelo; Sívori, Francisco Mariano; Larreteguy, Axel Eduardo; Montaño, Sabrina Ines; Aguerre, Horacio Javier; et al.; A multiscale Pseudo-DNS approach for solving turbulent boundary-layer problems; Elsevier Science SA; Computer Methods in Applied Mechanics and Engineering; 437; 3-2025; 1-39 0045-7825 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0045782525000763 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cma.2025.117804 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science SA |
| publisher.none.fl_str_mv |
Elsevier Science SA |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781898868654080 |
| score |
12.982451 |