Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
- Autores
- Zanardi, Maria Marta; Sarotti, Ariel Marcelo
- Año de publicación
- 2016
- Idioma
- español castellano
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.
The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process.
Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; Argentina
Fil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina - Materia
-
QUIMICA COMPUTACIONAL
RMN
REDES NEURONALES
ELUCIDACION ESTRUCTURAL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/67319
Ver los metadatos del registro completo
id |
CONICETDig_3c709640aca2ded8d7a431574fa3f2db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/67319 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructuralZanardi, Maria MartaSarotti, Ariel MarceloQUIMICA COMPUTACIONALRMNREDES NEURONALESELUCIDACION ESTRUCTURALhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process.Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; ArgentinaFil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaPontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67319Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-1071668-1622CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://bibliotecadigital.uca.edu.ar/greenstone/cgi-bin/library.cgi?a=d&c=Revistas&d=simulacion-bidimensional-rmn-acopladainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:13Zoai:ri.conicet.gov.ar:11336/67319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:14.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
title |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
spellingShingle |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural Zanardi, Maria Marta QUIMICA COMPUTACIONAL RMN REDES NEURONALES ELUCIDACION ESTRUCTURAL |
title_short |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
title_full |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
title_fullStr |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
title_full_unstemmed |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
title_sort |
Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural |
dc.creator.none.fl_str_mv |
Zanardi, Maria Marta Sarotti, Ariel Marcelo |
author |
Zanardi, Maria Marta |
author_facet |
Zanardi, Maria Marta Sarotti, Ariel Marcelo |
author_role |
author |
author2 |
Sarotti, Ariel Marcelo |
author2_role |
author |
dc.subject.none.fl_str_mv |
QUIMICA COMPUTACIONAL RMN REDES NEURONALES ELUCIDACION ESTRUCTURAL |
topic |
QUIMICA COMPUTACIONAL RMN REDES NEURONALES ELUCIDACION ESTRUCTURAL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural. The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process. Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; Argentina Fil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina |
description |
El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/67319 Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-107 1668-1622 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/67319 |
identifier_str_mv |
Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-107 1668-1622 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://bibliotecadigital.uca.edu.ar/greenstone/cgi-bin/library.cgi?a=d&c=Revistas&d=simulacion-bidimensional-rmn-acoplada |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario |
publisher.none.fl_str_mv |
Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269744906895360 |
score |
13.13397 |