Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural

Autores
Zanardi, Maria Marta; Sarotti, Ariel Marcelo
Año de publicación
2016
Idioma
español castellano
Tipo de recurso
artículo
Estado
versión publicada
Descripción
El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.
The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process.
Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; Argentina
Fil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
Materia
QUIMICA COMPUTACIONAL
RMN
REDES NEURONALES
ELUCIDACION ESTRUCTURAL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67319

id CONICETDig_3c709640aca2ded8d7a431574fa3f2db
oai_identifier_str oai:ri.conicet.gov.ar:11336/67319
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructuralZanardi, Maria MartaSarotti, Ariel MarceloQUIMICA COMPUTACIONALRMNREDES NEURONALESELUCIDACION ESTRUCTURALhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process.Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; ArgentinaFil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; ArgentinaPontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67319Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-1071668-1622CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://bibliotecadigital.uca.edu.ar/greenstone/cgi-bin/library.cgi?a=d&c=Revistas&d=simulacion-bidimensional-rmn-acopladainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:13Zoai:ri.conicet.gov.ar:11336/67319instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:14.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
title Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
spellingShingle Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
Zanardi, Maria Marta
QUIMICA COMPUTACIONAL
RMN
REDES NEURONALES
ELUCIDACION ESTRUCTURAL
title_short Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
title_full Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
title_fullStr Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
title_full_unstemmed Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
title_sort Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural
dc.creator.none.fl_str_mv Zanardi, Maria Marta
Sarotti, Ariel Marcelo
author Zanardi, Maria Marta
author_facet Zanardi, Maria Marta
Sarotti, Ariel Marcelo
author_role author
author2 Sarotti, Ariel Marcelo
author2_role author
dc.subject.none.fl_str_mv QUIMICA COMPUTACIONAL
RMN
REDES NEURONALES
ELUCIDACION ESTRUCTURAL
topic QUIMICA COMPUTACIONAL
RMN
REDES NEURONALES
ELUCIDACION ESTRUCTURAL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.4
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.
The isolation, characterization and total synthesis of new natural products with potential biological activity is one of the most exciting areas of chemistry. Regarding this, structural elucidation of complex organic molecules is a highly challenging task. Among the different spectroscopic techniques to carry out this purpose stand out the Nuclear Magnetic Resonance, which has evolved with the advent of increasingly sophisticated spectrometers and new pulse sequences. However in the golden age of NMR, the publication of incorrect structures remains a common situation. The large molecular complexity, human errors, signal ambiguity and sample impurities can be considered as the most common sources of erroneous assignments. Hundreds of structural revisions have been published in recent decades, ranging from severe errors in connectivity to subtle stereochemical errors. Taking into account that these discrepancies are often detected after the total synthesis of the originally proposed (erroneous) structure, it is not illogical to assume that the actual molecular architecture of many of the reported natural products remains unknown. Modern computational chemistry has contributed significantly to preventing these errors. In this context we have developed some tools to interpret the correlation between experimental and calculated NMR data that contribute significantly to structural elucidation process.
Fil: Zanardi, Maria Marta. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina. Pontificia Universidad Católica Argentina ; Argentina
Fil: Sarotti, Ariel Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Química Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Química Rosario; Argentina
description El aislamiento, caracterización y síntesis total de nuevos productos naturales con potencial actividad biológica, es una de las áreas más apasionantes de la química. Dentro de esta, la elucidación estructural de moléculas orgánicas complejas es una tarea sumamente desafiante. Entre las distintas técnicas espectroscópicas para llevar a cabo tal fin se destaca la Resonancia Magnética Nuclear (RMN) la cual ha ido evolucionando con el advenimiento de espectrómetros cada vez más sofisticados y nuevas secuencias de pulsos. Sin embargo en la era dorada de la RMN la publicación de estructuras incorrectas continúa siendo una situación común. La gran complejidad molecular, los errores humanos, la ambigüedad de señales y las impurezas de las muestras pueden considerarse como las fuentes más comunes de las asignaciones erróneas. Cientos de revisiones estructurales se han publicado en las últimas décadas, que van desde errores groseros en la conectividad a sutiles (pero no menos importante) errores estereoquímicos. Teniendo en cuenta que las discrepancias se detectan a menudo después de la síntesis total de la estructura originalmente propuesta (errónea), no es ilógico suponer que la arquitectura molecular real de muchos de los productos naturales reportados sigue siendo desconocida.La química computacional moderna ha contribuido significativamente a prevenir estos errores. En este contexto hemos desarrollado herramientas que permiten interpretar la correlación entre datos experimentales y calculados de RMN que contribuyen significativamente en el proceso de elucidación estructural.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67319
Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-107
1668-1622
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67319
identifier_str_mv Zanardi, Maria Marta; Sarotti, Ariel Marcelo; Simulación bidimensional de RMN acoplada con reconocimiento de patrones via redes neuronales: una poderosa herramienta de validación estructural; Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario; Energeia; 14; 14; 12-2016; 101-107
1668-1622
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://bibliotecadigital.uca.edu.ar/greenstone/cgi-bin/library.cgi?a=d&c=Revistas&d=simulacion-bidimensional-rmn-acoplada
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario
publisher.none.fl_str_mv Pontificia Universidad Católica Argentina "Santa María de los Buenos Aires". Facultad de Química e Ingeniería del Rosario
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269744906895360
score 13.13397