Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications
- Autores
- Zalazar, Martin; Guarnieri, Fabio Ariel
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Nowadays it is in constant growing the development of thin film bulk acoustic resonators. If the piezoelectric material is going to be implanted in the human body, an important requirement is the biocompatibility of the implant. In this regard, Aluminum Nitride (AlN) has emerged as an attractive alternative for use in biomedical MicroElectroMechanical Systems. Ultrananocrystalline Diamond (UNCD) is a promising material to be used in biomedical applications, due to its extraordinary mulifunctionality; it is exceptional for implantable medical devices requiring stringent biological performance. Since both UNCD and AlN films can be processed via photolithography processes used in microfabrication, the integration of UNCD and AlN films provides the bases for developing a new generation of biocompatible Bio-MEMS/NEMS. Research and development was conducted to produce implantable MEMS devices: Pt/piezoelectric AlN/Pt layer heterostructure was grown and patterned on the UNCD membrane with a Ti adhesion layer. By applying voltages between the top and bottom Pt electrodes layers the piezoelectric AlN layer is energized. The feasibility of the fabrication of biocompatible AlN/diamond-based FBAR structure has been demonstrated.
Fil: Zalazar, Martin. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; Argentina
Fil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; Argentina - Materia
-
Thin Film Bulk Acoustic Wave Resonator
Biomedical Applications
AlN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/8542
Ver los metadatos del registro completo
id |
CONICETDig_3bda53417736063ef751b4a6d488d487 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/8542 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical ApplicationsZalazar, MartinGuarnieri, Fabio ArielThin Film Bulk Acoustic Wave ResonatorBiomedical ApplicationsAlNhttps://purl.org/becyt/ford/2.10https://purl.org/becyt/ford/2Nowadays it is in constant growing the development of thin film bulk acoustic resonators. If the piezoelectric material is going to be implanted in the human body, an important requirement is the biocompatibility of the implant. In this regard, Aluminum Nitride (AlN) has emerged as an attractive alternative for use in biomedical MicroElectroMechanical Systems. Ultrananocrystalline Diamond (UNCD) is a promising material to be used in biomedical applications, due to its extraordinary mulifunctionality; it is exceptional for implantable medical devices requiring stringent biological performance. Since both UNCD and AlN films can be processed via photolithography processes used in microfabrication, the integration of UNCD and AlN films provides the bases for developing a new generation of biocompatible Bio-MEMS/NEMS. Research and development was conducted to produce implantable MEMS devices: Pt/piezoelectric AlN/Pt layer heterostructure was grown and patterned on the UNCD membrane with a Ti adhesion layer. By applying voltages between the top and bottom Pt electrodes layers the piezoelectric AlN layer is energized. The feasibility of the fabrication of biocompatible AlN/diamond-based FBAR structure has been demonstrated.Fil: Zalazar, Martin. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; ArgentinaFil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; ArgentinaIOP Publishing2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/8542Zalazar, Martin; Guarnieri, Fabio Ariel; Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications; IOP Publishing; Journal of Physics: Conference Series; 477; -1-2013; 1-81742-65881742-6596enginfo:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-6596/477/1/012009info:eu-repo/semantics/altIdentifier/doi//10.1088/1742-6596/477/1/012009info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:57:43Zoai:ri.conicet.gov.ar:11336/8542instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:57:44.15CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
title |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
spellingShingle |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications Zalazar, Martin Thin Film Bulk Acoustic Wave Resonator Biomedical Applications AlN |
title_short |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
title_full |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
title_fullStr |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
title_full_unstemmed |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
title_sort |
Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications |
dc.creator.none.fl_str_mv |
Zalazar, Martin Guarnieri, Fabio Ariel |
author |
Zalazar, Martin |
author_facet |
Zalazar, Martin Guarnieri, Fabio Ariel |
author_role |
author |
author2 |
Guarnieri, Fabio Ariel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Thin Film Bulk Acoustic Wave Resonator Biomedical Applications AlN |
topic |
Thin Film Bulk Acoustic Wave Resonator Biomedical Applications AlN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.10 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Nowadays it is in constant growing the development of thin film bulk acoustic resonators. If the piezoelectric material is going to be implanted in the human body, an important requirement is the biocompatibility of the implant. In this regard, Aluminum Nitride (AlN) has emerged as an attractive alternative for use in biomedical MicroElectroMechanical Systems. Ultrananocrystalline Diamond (UNCD) is a promising material to be used in biomedical applications, due to its extraordinary mulifunctionality; it is exceptional for implantable medical devices requiring stringent biological performance. Since both UNCD and AlN films can be processed via photolithography processes used in microfabrication, the integration of UNCD and AlN films provides the bases for developing a new generation of biocompatible Bio-MEMS/NEMS. Research and development was conducted to produce implantable MEMS devices: Pt/piezoelectric AlN/Pt layer heterostructure was grown and patterned on the UNCD membrane with a Ti adhesion layer. By applying voltages between the top and bottom Pt electrodes layers the piezoelectric AlN layer is energized. The feasibility of the fabrication of biocompatible AlN/diamond-based FBAR structure has been demonstrated. Fil: Zalazar, Martin. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; Argentina Fil: Guarnieri, Fabio Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico. Centro de Investigación de Métodos Computacionales; Argentina. Universidad Nacional de Entre Rios. Facultad de Ingenieria. Departamento de Bioingenieria; Argentina |
description |
Nowadays it is in constant growing the development of thin film bulk acoustic resonators. If the piezoelectric material is going to be implanted in the human body, an important requirement is the biocompatibility of the implant. In this regard, Aluminum Nitride (AlN) has emerged as an attractive alternative for use in biomedical MicroElectroMechanical Systems. Ultrananocrystalline Diamond (UNCD) is a promising material to be used in biomedical applications, due to its extraordinary mulifunctionality; it is exceptional for implantable medical devices requiring stringent biological performance. Since both UNCD and AlN films can be processed via photolithography processes used in microfabrication, the integration of UNCD and AlN films provides the bases for developing a new generation of biocompatible Bio-MEMS/NEMS. Research and development was conducted to produce implantable MEMS devices: Pt/piezoelectric AlN/Pt layer heterostructure was grown and patterned on the UNCD membrane with a Ti adhesion layer. By applying voltages between the top and bottom Pt electrodes layers the piezoelectric AlN layer is energized. The feasibility of the fabrication of biocompatible AlN/diamond-based FBAR structure has been demonstrated. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/8542 Zalazar, Martin; Guarnieri, Fabio Ariel; Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications; IOP Publishing; Journal of Physics: Conference Series; 477; -1-2013; 1-8 1742-6588 1742-6596 |
url |
http://hdl.handle.net/11336/8542 |
identifier_str_mv |
Zalazar, Martin; Guarnieri, Fabio Ariel; Diamond-Based Thin Film Bulk Acoustic Wave Resonator for Biomedical Applications; IOP Publishing; Journal of Physics: Conference Series; 477; -1-2013; 1-8 1742-6588 1742-6596 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1742-6596/477/1/012009 info:eu-repo/semantics/altIdentifier/doi//10.1088/1742-6596/477/1/012009 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083116615073792 |
score |
13.22299 |