A simple approach to model SFRC
- Autores
- Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.
Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; Argentina - Materia
-
Steel Fiber Reinforced Concrete
Self compacting concrete
Pull-out
Flexure
Numerical model
Composite - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241540
Ver los metadatos del registro completo
id |
CONICETDig_3bc5dfea5559f31bfd8ecdcbb68cf04c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241540 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A simple approach to model SFRCLuccioni, Bibiana MariaRuano Sandoval, Gonzalo JavierIsla Calderón, Facundo AndrésZerbino, Raul LuisGiaccio, Graciela MartaSteel Fiber Reinforced ConcreteSelf compacting concretePull-outFlexureNumerical modelCompositehttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; ArgentinaElsevier2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241540Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-1240950-0618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950061812004965info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2012.07.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:02Zoai:ri.conicet.gov.ar:11336/241540instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:02.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A simple approach to model SFRC |
title |
A simple approach to model SFRC |
spellingShingle |
A simple approach to model SFRC Luccioni, Bibiana Maria Steel Fiber Reinforced Concrete Self compacting concrete Pull-out Flexure Numerical model Composite |
title_short |
A simple approach to model SFRC |
title_full |
A simple approach to model SFRC |
title_fullStr |
A simple approach to model SFRC |
title_full_unstemmed |
A simple approach to model SFRC |
title_sort |
A simple approach to model SFRC |
dc.creator.none.fl_str_mv |
Luccioni, Bibiana Maria Ruano Sandoval, Gonzalo Javier Isla Calderón, Facundo Andrés Zerbino, Raul Luis Giaccio, Graciela Marta |
author |
Luccioni, Bibiana Maria |
author_facet |
Luccioni, Bibiana Maria Ruano Sandoval, Gonzalo Javier Isla Calderón, Facundo Andrés Zerbino, Raul Luis Giaccio, Graciela Marta |
author_role |
author |
author2 |
Ruano Sandoval, Gonzalo Javier Isla Calderón, Facundo Andrés Zerbino, Raul Luis Giaccio, Graciela Marta |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
Steel Fiber Reinforced Concrete Self compacting concrete Pull-out Flexure Numerical model Composite |
topic |
Steel Fiber Reinforced Concrete Self compacting concrete Pull-out Flexure Numerical model Composite |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.1 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper. Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina Fil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina Fil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; Argentina |
description |
Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241540 Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-124 0950-0618 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241540 |
identifier_str_mv |
Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-124 0950-0618 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950061812004965 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2012.07.027 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981331083984896 |
score |
12.48226 |