A simple approach to model SFRC

Autores
Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.
Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; Argentina
Materia
Steel Fiber Reinforced Concrete
Self compacting concrete
Pull-out
Flexure
Numerical model
Composite
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241540

id CONICETDig_3bc5dfea5559f31bfd8ecdcbb68cf04c
oai_identifier_str oai:ri.conicet.gov.ar:11336/241540
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A simple approach to model SFRCLuccioni, Bibiana MariaRuano Sandoval, Gonzalo JavierIsla Calderón, Facundo AndrésZerbino, Raul LuisGiaccio, Graciela MartaSteel Fiber Reinforced ConcreteSelf compacting concretePull-outFlexureNumerical modelCompositehttps://purl.org/becyt/ford/2.1https://purl.org/becyt/ford/2Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; ArgentinaFil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; ArgentinaFil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; ArgentinaElsevier2012-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241540Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-1240950-0618CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950061812004965info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2012.07.027info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:24:02Zoai:ri.conicet.gov.ar:11336/241540instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:24:02.976CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A simple approach to model SFRC
title A simple approach to model SFRC
spellingShingle A simple approach to model SFRC
Luccioni, Bibiana Maria
Steel Fiber Reinforced Concrete
Self compacting concrete
Pull-out
Flexure
Numerical model
Composite
title_short A simple approach to model SFRC
title_full A simple approach to model SFRC
title_fullStr A simple approach to model SFRC
title_full_unstemmed A simple approach to model SFRC
title_sort A simple approach to model SFRC
dc.creator.none.fl_str_mv Luccioni, Bibiana Maria
Ruano Sandoval, Gonzalo Javier
Isla Calderón, Facundo Andrés
Zerbino, Raul Luis
Giaccio, Graciela Marta
author Luccioni, Bibiana Maria
author_facet Luccioni, Bibiana Maria
Ruano Sandoval, Gonzalo Javier
Isla Calderón, Facundo Andrés
Zerbino, Raul Luis
Giaccio, Graciela Marta
author_role author
author2 Ruano Sandoval, Gonzalo Javier
Isla Calderón, Facundo Andrés
Zerbino, Raul Luis
Giaccio, Graciela Marta
author2_role author
author
author
author
dc.subject.none.fl_str_mv Steel Fiber Reinforced Concrete
Self compacting concrete
Pull-out
Flexure
Numerical model
Composite
topic Steel Fiber Reinforced Concrete
Self compacting concrete
Pull-out
Flexure
Numerical model
Composite
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.1
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.
Fil: Luccioni, Bibiana Maria. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Ruano Sandoval, Gonzalo Javier. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Isla Calderón, Facundo Andrés. Universidad Nacional de Tucumán; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina
Fil: Zerbino, Raul Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata; Argentina
Fil: Giaccio, Graciela Marta. Universidad Nacional de La Plata; Argentina
description Experimental research that shows the improvement in structural behavior of concrete with the addition of fibers has been developed in the last years. Fibers control cracking and thus increase concrete toughness and ductility. Much effort has been devoted in the last decade to model this material. A simple homogenization approach based on a modified mixture theory is proposed in this paper to model Steel Fiber Reinforced Concrete (SFRC). The proposed and calibrated model takes information from the micro-scale to model the macroscale. SFRC is considered as a composite material composed by concrete matrix and fibers. Concrete is modeled with an elastoplastic model and steel fibers are considered as orthotropic elastoplastic inclusions that can debond and slip from the matrix. In order to include this inelastic phenomenon without explicitly modeling interface, constitutive equations of fibers are modified including information from the debonding-slipping phenomena. The model requires concrete properties, fibers material, geometry, distribution and orientation as input data. The fibers bond-slip behavior is automatically derived from concrete properties and fibers geometry or it can be alternatively obtained from pull out tests. As illustration, the tension response of SFRC with different fiber contents is numerically simulated. The model is verified with the results of bending tests of beams extracted from a SFRC slab that present different fibers distribution due to the slab casting process. Comparisons with other numerical approaches modeling SFRC as an equivalent homogeneous material are also included in the paper.
publishDate 2012
dc.date.none.fl_str_mv 2012-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241540
Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-124
0950-0618
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241540
identifier_str_mv Luccioni, Bibiana Maria; Ruano Sandoval, Gonzalo Javier; Isla Calderón, Facundo Andrés; Zerbino, Raul Luis; Giaccio, Graciela Marta; A simple approach to model SFRC; Elsevier; Construction And Building Materials; 37; 12-2012; 111-124
0950-0618
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0950061812004965
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.conbuildmat.2012.07.027
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981331083984896
score 12.48226