Critical spectrum of fluctuations for deconfinement at protoneutron star cores
- Autores
- Lugones, G.; Grunfeld, Ana Gabriela
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the deconfinement of hadronic matter into quark matter in a protoneutron star focusing on the effects of the finite size on the formation of just deconfined color superconducting quark droplets embedded in the hadronic environment. The hadronic phase is modeled by the nonlinear Walecka model at finite temperature including the baryon octet and neutrino trapping. For quark matter we use an SU(3)f Nambu-Jona-Lasinio model including color superconductivity. The finite size effects on the just deconfined droplets are considered in the frame of the multiple reflection expansion. In addition, we consider that just deconfined quark matter is transitorily out of equilibrium respect to weak interaction, and we impose color neutrality and flavor conservation during the transition. We calculate self-consistently the surface tension and curvature energy density of the quark hadron interphase and find that it is larger than the values typically assumed in the literature. The transition density is calculated for drops of different sizes, and at different temperatures and neutrino trapping conditions. Then, we show that energy density fluctuations are much more relevant for deconfinement than temperature and neutrino density fluctuations. We calculate the critical size spectrum of energy density fluctuations that allows deconfinement as well as the nucleation rate of each critical bubble. We find that drops with any radii smaller than 800fm can be formed at a huge rate when matter achieves the bulk transition limit of 5-6 times the nuclear saturation density.
Fil: Lugones, G.. Universidad Federal do Abc; Brasil
Fil: Grunfeld, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina - Materia
-
Chiral Lagrangians
Quark deconfinement
Equations of state of neutron-star matter - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/188905
Ver los metadatos del registro completo
id |
CONICETDig_3b186f4169d92ab6e343f452450c2086 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/188905 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Critical spectrum of fluctuations for deconfinement at protoneutron star coresLugones, G.Grunfeld, Ana GabrielaChiral LagrangiansQuark deconfinementEquations of state of neutron-star matterhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We study the deconfinement of hadronic matter into quark matter in a protoneutron star focusing on the effects of the finite size on the formation of just deconfined color superconducting quark droplets embedded in the hadronic environment. The hadronic phase is modeled by the nonlinear Walecka model at finite temperature including the baryon octet and neutrino trapping. For quark matter we use an SU(3)f Nambu-Jona-Lasinio model including color superconductivity. The finite size effects on the just deconfined droplets are considered in the frame of the multiple reflection expansion. In addition, we consider that just deconfined quark matter is transitorily out of equilibrium respect to weak interaction, and we impose color neutrality and flavor conservation during the transition. We calculate self-consistently the surface tension and curvature energy density of the quark hadron interphase and find that it is larger than the values typically assumed in the literature. The transition density is calculated for drops of different sizes, and at different temperatures and neutrino trapping conditions. Then, we show that energy density fluctuations are much more relevant for deconfinement than temperature and neutrino density fluctuations. We calculate the critical size spectrum of energy density fluctuations that allows deconfinement as well as the nucleation rate of each critical bubble. We find that drops with any radii smaller than 800fm can be formed at a huge rate when matter achieves the bulk transition limit of 5-6 times the nuclear saturation density.Fil: Lugones, G.. Universidad Federal do Abc; BrasilFil: Grunfeld, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); ArgentinaAmerican Physical Society2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/188905Lugones, G.; Grunfeld, Ana Gabriela; Critical spectrum of fluctuations for deconfinement at protoneutron star cores; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 84; 8; 10-2011; 1-111550-7998CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://prd.aps.org/abstract/PRD/v84/i8/e085003info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.84.085003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:48Zoai:ri.conicet.gov.ar:11336/188905instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:49.25CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
title |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
spellingShingle |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores Lugones, G. Chiral Lagrangians Quark deconfinement Equations of state of neutron-star matter |
title_short |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
title_full |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
title_fullStr |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
title_full_unstemmed |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
title_sort |
Critical spectrum of fluctuations for deconfinement at protoneutron star cores |
dc.creator.none.fl_str_mv |
Lugones, G. Grunfeld, Ana Gabriela |
author |
Lugones, G. |
author_facet |
Lugones, G. Grunfeld, Ana Gabriela |
author_role |
author |
author2 |
Grunfeld, Ana Gabriela |
author2_role |
author |
dc.subject.none.fl_str_mv |
Chiral Lagrangians Quark deconfinement Equations of state of neutron-star matter |
topic |
Chiral Lagrangians Quark deconfinement Equations of state of neutron-star matter |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the deconfinement of hadronic matter into quark matter in a protoneutron star focusing on the effects of the finite size on the formation of just deconfined color superconducting quark droplets embedded in the hadronic environment. The hadronic phase is modeled by the nonlinear Walecka model at finite temperature including the baryon octet and neutrino trapping. For quark matter we use an SU(3)f Nambu-Jona-Lasinio model including color superconductivity. The finite size effects on the just deconfined droplets are considered in the frame of the multiple reflection expansion. In addition, we consider that just deconfined quark matter is transitorily out of equilibrium respect to weak interaction, and we impose color neutrality and flavor conservation during the transition. We calculate self-consistently the surface tension and curvature energy density of the quark hadron interphase and find that it is larger than the values typically assumed in the literature. The transition density is calculated for drops of different sizes, and at different temperatures and neutrino trapping conditions. Then, we show that energy density fluctuations are much more relevant for deconfinement than temperature and neutrino density fluctuations. We calculate the critical size spectrum of energy density fluctuations that allows deconfinement as well as the nucleation rate of each critical bubble. We find that drops with any radii smaller than 800fm can be formed at a huge rate when matter achieves the bulk transition limit of 5-6 times the nuclear saturation density. Fil: Lugones, G.. Universidad Federal do Abc; Brasil Fil: Grunfeld, Ana Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina |
description |
We study the deconfinement of hadronic matter into quark matter in a protoneutron star focusing on the effects of the finite size on the formation of just deconfined color superconducting quark droplets embedded in the hadronic environment. The hadronic phase is modeled by the nonlinear Walecka model at finite temperature including the baryon octet and neutrino trapping. For quark matter we use an SU(3)f Nambu-Jona-Lasinio model including color superconductivity. The finite size effects on the just deconfined droplets are considered in the frame of the multiple reflection expansion. In addition, we consider that just deconfined quark matter is transitorily out of equilibrium respect to weak interaction, and we impose color neutrality and flavor conservation during the transition. We calculate self-consistently the surface tension and curvature energy density of the quark hadron interphase and find that it is larger than the values typically assumed in the literature. The transition density is calculated for drops of different sizes, and at different temperatures and neutrino trapping conditions. Then, we show that energy density fluctuations are much more relevant for deconfinement than temperature and neutrino density fluctuations. We calculate the critical size spectrum of energy density fluctuations that allows deconfinement as well as the nucleation rate of each critical bubble. We find that drops with any radii smaller than 800fm can be formed at a huge rate when matter achieves the bulk transition limit of 5-6 times the nuclear saturation density. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/188905 Lugones, G.; Grunfeld, Ana Gabriela; Critical spectrum of fluctuations for deconfinement at protoneutron star cores; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 84; 8; 10-2011; 1-11 1550-7998 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/188905 |
identifier_str_mv |
Lugones, G.; Grunfeld, Ana Gabriela; Critical spectrum of fluctuations for deconfinement at protoneutron star cores; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 84; 8; 10-2011; 1-11 1550-7998 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://prd.aps.org/abstract/PRD/v84/i8/e085003 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.84.085003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614172918153216 |
score |
13.070432 |