Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms

Autores
Halac, S. R.; Villafañe, Virginia Estela; Gonçalves, Rodrigo Javier; Helbling, Eduardo Walter
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We carried out experiments using long-term (5–7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7′S; 65°2.5′W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR + UV-A + UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4 h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant UVR and temperature interactive effects were found in I. galbana, the most UVR sensitive species. The joint effects on UVR and temperature, and the species-specific photoprotective responses will affect the trophodynamics and production of aquatic ecosystems in a way that is difficult to predict; however the specificity of the responses suggests that not all phytoplankton would be equally benefited by temperature increases therefore affecting the balance and interaction among species in the water column.
Fil: Halac, S. R.. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Instituto Nacional del Agua. Córdoba; Argentina
Fil: Villafañe, Virginia Estela. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gonçalves, Rodrigo Javier. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Temperature
Climate Change
Phytoplankton
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17211

id CONICETDig_3b108a8bb40e9434c77fa0c030e8b5e5
oai_identifier_str oai:ri.conicet.gov.ar:11336/17211
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanismsHalac, S. R.Villafañe, Virginia EstelaGonçalves, Rodrigo JavierHelbling, Eduardo WalterTemperatureClimate ChangePhytoplanktonhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We carried out experiments using long-term (5–7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7′S; 65°2.5′W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR + UV-A + UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4 h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant UVR and temperature interactive effects were found in I. galbana, the most UVR sensitive species. The joint effects on UVR and temperature, and the species-specific photoprotective responses will affect the trophodynamics and production of aquatic ecosystems in a way that is difficult to predict; however the specificity of the responses suggests that not all phytoplankton would be equally benefited by temperature increases therefore affecting the balance and interaction among species in the water column.Fil: Halac, S. R.. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Instituto Nacional del Agua. Córdoba; ArgentinaFil: Villafañe, Virginia Estela. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Gonçalves, Rodrigo Javier. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science Sa2014-10-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17211Halac, S. R.; Villafañe, Virginia Estela; Gonçalves, Rodrigo Javier; Helbling, Eduardo Walter; Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms; Elsevier Science Sa; Journal Of Photochemistry And Photobiology B: Biology; 141; 22-10-2014; 217-2271011-1344enginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphotobiol.2014.09.022info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1011134414003066info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:07:17Zoai:ri.conicet.gov.ar:11336/17211instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:07:18.165CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
title Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
spellingShingle Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
Halac, S. R.
Temperature
Climate Change
Phytoplankton
title_short Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
title_full Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
title_fullStr Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
title_full_unstemmed Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
title_sort Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms
dc.creator.none.fl_str_mv Halac, S. R.
Villafañe, Virginia Estela
Gonçalves, Rodrigo Javier
Helbling, Eduardo Walter
author Halac, S. R.
author_facet Halac, S. R.
Villafañe, Virginia Estela
Gonçalves, Rodrigo Javier
Helbling, Eduardo Walter
author_role author
author2 Villafañe, Virginia Estela
Gonçalves, Rodrigo Javier
Helbling, Eduardo Walter
author2_role author
author
author
dc.subject.none.fl_str_mv Temperature
Climate Change
Phytoplankton
topic Temperature
Climate Change
Phytoplankton
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We carried out experiments using long-term (5–7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7′S; 65°2.5′W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR + UV-A + UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4 h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant UVR and temperature interactive effects were found in I. galbana, the most UVR sensitive species. The joint effects on UVR and temperature, and the species-specific photoprotective responses will affect the trophodynamics and production of aquatic ecosystems in a way that is difficult to predict; however the specificity of the responses suggests that not all phytoplankton would be equally benefited by temperature increases therefore affecting the balance and interaction among species in the water column.
Fil: Halac, S. R.. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Instituto Nacional del Agua. Córdoba; Argentina
Fil: Villafañe, Virginia Estela. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Gonçalves, Rodrigo Javier. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Helbling, Eduardo Walter. Fundación Playa Unión. Estación de Fotobiología Playa Unión; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We carried out experiments using long-term (5–7 days) exposure of marine phytoplankton species to solar radiation, in order to assess the joint effects of ultraviolet radiation (UVR) and temperature on the photochemical responses and photoprotective mechanisms. In the experiments, carried out at Atlantic coast of Patagonia (43°18.7′S; 65°2.5′W) in spring-summer 2011, we used three species as model organisms: the dinoflagellate Prorocentrum micans, the chlorophyte Dunaliella salina and the haptophyte Isochrysis galbana. They were exposed under: (1) two radiation quality treatments (by using different filters): P (PAR, >400 nm) and PAB (PAR + UV-A + UV-B, >280 nm); (2) two radiation intensities (100% and 50%) and (3) two experimental temperatures: 18 °C and 23 °C during summer and 15 °C and 20 °C in spring experiments, simulating a 5 °C increase under a scenario of climate change. In addition, short-term (4 h) artificial radiation exposure experiments were implemented to study vertical migration of cells pre- and non-acclimated to solar radiation. We observed species-specific responses: P. micans displayed a better photochemical performance and a lower inhibition induced by UVR than D. salina and I. galbana. In accordance, P. micans was the only species that showed a synthesis of UV-absorbing compounds (UVACs) during the experiment. On the other hand, non-photochemical quenching (NPQ) was activated in D. salina at noon throughout the exposure, while I. galbana did not show a regular NPQ pattern. This mechanism was almost absent in P. micans. Regarding vertical migration, I. galbana showed the most pronounced displacement to deepest layers since the first two hours of exposure in pre- and non-acclimated cells, while only non-acclimated D. salina cells moved to depth at the end of the experiment. Finally, temperature partially counteracted solar radiation inhibition in D. salina and I. galbana, whereas no effect was observed upon P. micans. In particular, significant UVR and temperature interactive effects were found in I. galbana, the most UVR sensitive species. The joint effects on UVR and temperature, and the species-specific photoprotective responses will affect the trophodynamics and production of aquatic ecosystems in a way that is difficult to predict; however the specificity of the responses suggests that not all phytoplankton would be equally benefited by temperature increases therefore affecting the balance and interaction among species in the water column.
publishDate 2014
dc.date.none.fl_str_mv 2014-10-22
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17211
Halac, S. R.; Villafañe, Virginia Estela; Gonçalves, Rodrigo Javier; Helbling, Eduardo Walter; Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms; Elsevier Science Sa; Journal Of Photochemistry And Photobiology B: Biology; 141; 22-10-2014; 217-227
1011-1344
url http://hdl.handle.net/11336/17211
identifier_str_mv Halac, S. R.; Villafañe, Virginia Estela; Gonçalves, Rodrigo Javier; Helbling, Eduardo Walter; Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms; Elsevier Science Sa; Journal Of Photochemistry And Photobiology B: Biology; 141; 22-10-2014; 217-227
1011-1344
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jphotobiol.2014.09.022
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1011134414003066
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613931063050241
score 13.070432