When and why noise correlations are important in neural decoding

Autores
Eyherabide, Hugo Gabriel; Samengo, Ines
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain–machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.
Fil: Eyherabide, Hugo Gabriel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Neural Correlations
Information Theory
Decoding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/17629

id CONICETDig_39435d14d7ca1a4462b93ae522e7e7f2
oai_identifier_str oai:ri.conicet.gov.ar:11336/17629
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling When and why noise correlations are important in neural decodingEyherabide, Hugo GabrielSamengo, InesNeural CorrelationsInformation TheoryDecodinghttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain–machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.Fil: Eyherabide, Hugo Gabriel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSociety For Neuroscience2013-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/17629Eyherabide, Hugo Gabriel; Samengo, Ines; When and why noise correlations are important in neural decoding; Society For Neuroscience; Journal Of Neuroscience; 33; 45; 11-2013; 17921-179360270-6474enginfo:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.0357-13.2013info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/33/45/17921info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:18Zoai:ri.conicet.gov.ar:11336/17629instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:19.237CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv When and why noise correlations are important in neural decoding
title When and why noise correlations are important in neural decoding
spellingShingle When and why noise correlations are important in neural decoding
Eyherabide, Hugo Gabriel
Neural Correlations
Information Theory
Decoding
title_short When and why noise correlations are important in neural decoding
title_full When and why noise correlations are important in neural decoding
title_fullStr When and why noise correlations are important in neural decoding
title_full_unstemmed When and why noise correlations are important in neural decoding
title_sort When and why noise correlations are important in neural decoding
dc.creator.none.fl_str_mv Eyherabide, Hugo Gabriel
Samengo, Ines
author Eyherabide, Hugo Gabriel
author_facet Eyherabide, Hugo Gabriel
Samengo, Ines
author_role author
author2 Samengo, Ines
author2_role author
dc.subject.none.fl_str_mv Neural Correlations
Information Theory
Decoding
topic Neural Correlations
Information Theory
Decoding
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain–machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.
Fil: Eyherabide, Hugo Gabriel. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Samengo, Ines. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Area de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description Information may be encoded both in the individual activity of neurons and in the correlations between their activities. Understanding whether knowledge of noise correlations is required to decode all the encoded information is fundamental for constructing computational models, brain–machine interfaces, and neuroprosthetics. If correlations can be ignored with tolerable losses of information, the readout of neural signals is simplified dramatically. To that end, previous studies have constructed decoders assuming that neurons fire independently and then derived bounds for the information that is lost. However, here we show that previous bounds were not tight and overestimated the importance of noise correlations. In this study, we quantify the exact loss of information induced by ignoring noise correlations and show why previous estimations were not tight. Further, by studying the elementary parts of the decoding process, we determine when and why information is lost on a single-response basis. We introduce the minimum decoding error to assess the distinctive role of noise correlations under natural conditions. We conclude that all of the encoded information can be decoded without knowledge of noise correlations in many more situations than previously thought.
publishDate 2013
dc.date.none.fl_str_mv 2013-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/17629
Eyherabide, Hugo Gabriel; Samengo, Ines; When and why noise correlations are important in neural decoding; Society For Neuroscience; Journal Of Neuroscience; 33; 45; 11-2013; 17921-17936
0270-6474
url http://hdl.handle.net/11336/17629
identifier_str_mv Eyherabide, Hugo Gabriel; Samengo, Ines; When and why noise correlations are important in neural decoding; Society For Neuroscience; Journal Of Neuroscience; 33; 45; 11-2013; 17921-17936
0270-6474
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1523/JNEUROSCI.0357-13.2013
info:eu-repo/semantics/altIdentifier/url/http://www.jneurosci.org/content/33/45/17921
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society For Neuroscience
publisher.none.fl_str_mv Society For Neuroscience
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614455892115456
score 13.070432