A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas

Autores
Calzetta, Esteban Adolfo; Kandus, Patricia
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a purely hydrodynamic formalism to describe collisional, anisotropic insta-bilities in a relativistic plasma, that are usually described with kinetic theory tools. Ourmain motivation is the fact that coarse-grained models of high particle number systemsgive more clear and comprehensive physical descriptions of those systems than purelykinetic approaches, and can be more easily tested experimentally as well as numerically.Also they make it easier to follow perturbations from linear to nonlinear regimes. In par-ticular, we aim at developing a theory that describes both a background nonequilibriumuid congurations and its perturbations, to be able to account for the backreaction ofthe latter on the former. Our system of equations includes the usual conservation lawsfor the energy{momentum tensor and for the electric current, and the equations for twonew tensors that encode the information about dissipation. To make contact with kinetictheory, we write the dierent tensors as the moments of a nonequilibrium one-particledistribution function (1pdf) which, for illustrative purposes, we take in the form of aGrad-like ansatz. Although this choice limits the applicability of the formalism to statesnot far from equilibrium, it retains the main features of the underlying kinetic theory.Weassume the validity of the Vlasov{Boltzmann equation, with a collision integral given bythe Anderson{Witting prescription, which is more suitable for highly relativistic systemsthan Marle´s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emer-gence of instabilities in an anisotropic, but axially symmetric background. For smalldepartures of isotropy we nd the dispersion relation for normal modes, which admitunstable solutions for a wide range of values of the parameter space
Fil: Calzetta, Esteban Adolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kandus, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Materia
Plasmas
Inestabilidades
Magnetohidrodinamica
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/49273

id CONICETDig_38ba14d4ce518ad0c7b6955de99d4cd7
oai_identifier_str oai:ri.conicet.gov.ar:11336/49273
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmasCalzetta, Esteban AdolfoKandus, PatriciaPlasmasInestabilidadesMagnetohidrodinamicahttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We develop a purely hydrodynamic formalism to describe collisional, anisotropic insta-bilities in a relativistic plasma, that are usually described with kinetic theory tools. Ourmain motivation is the fact that coarse-grained models of high particle number systemsgive more clear and comprehensive physical descriptions of those systems than purelykinetic approaches, and can be more easily tested experimentally as well as numerically.Also they make it easier to follow perturbations from linear to nonlinear regimes. In par-ticular, we aim at developing a theory that describes both a background nonequilibriumuid congurations and its perturbations, to be able to account for the backreaction ofthe latter on the former. Our system of equations includes the usual conservation lawsfor the energy{momentum tensor and for the electric current, and the equations for twonew tensors that encode the information about dissipation. To make contact with kinetictheory, we write the dierent tensors as the moments of a nonequilibrium one-particledistribution function (1pdf) which, for illustrative purposes, we take in the form of aGrad-like ansatz. Although this choice limits the applicability of the formalism to statesnot far from equilibrium, it retains the main features of the underlying kinetic theory.Weassume the validity of the Vlasov{Boltzmann equation, with a collision integral given bythe Anderson{Witting prescription, which is more suitable for highly relativistic systemsthan Marle´s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emer-gence of instabilities in an anisotropic, but axially symmetric background. For smalldepartures of isotropy we nd the dispersion relation for normal modes, which admitunstable solutions for a wide range of values of the parameter spaceFil: Calzetta, Esteban Adolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Kandus, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaWorld Scientific2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/49273Calzetta, Esteban Adolfo; Kandus, Patricia; A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas; World Scientific; International Journal of Modern Physics A; 31; 35; 12-2016; 1-190217-751XCONICET DigitalCONICETenginfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:37:25Zoai:ri.conicet.gov.ar:11336/49273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:37:25.953CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
title A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
spellingShingle A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
Calzetta, Esteban Adolfo
Plasmas
Inestabilidades
Magnetohidrodinamica
title_short A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
title_full A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
title_fullStr A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
title_full_unstemmed A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
title_sort A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas
dc.creator.none.fl_str_mv Calzetta, Esteban Adolfo
Kandus, Patricia
author Calzetta, Esteban Adolfo
author_facet Calzetta, Esteban Adolfo
Kandus, Patricia
author_role author
author2 Kandus, Patricia
author2_role author
dc.subject.none.fl_str_mv Plasmas
Inestabilidades
Magnetohidrodinamica
topic Plasmas
Inestabilidades
Magnetohidrodinamica
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a purely hydrodynamic formalism to describe collisional, anisotropic insta-bilities in a relativistic plasma, that are usually described with kinetic theory tools. Ourmain motivation is the fact that coarse-grained models of high particle number systemsgive more clear and comprehensive physical descriptions of those systems than purelykinetic approaches, and can be more easily tested experimentally as well as numerically.Also they make it easier to follow perturbations from linear to nonlinear regimes. In par-ticular, we aim at developing a theory that describes both a background nonequilibriumuid congurations and its perturbations, to be able to account for the backreaction ofthe latter on the former. Our system of equations includes the usual conservation lawsfor the energy{momentum tensor and for the electric current, and the equations for twonew tensors that encode the information about dissipation. To make contact with kinetictheory, we write the dierent tensors as the moments of a nonequilibrium one-particledistribution function (1pdf) which, for illustrative purposes, we take in the form of aGrad-like ansatz. Although this choice limits the applicability of the formalism to statesnot far from equilibrium, it retains the main features of the underlying kinetic theory.Weassume the validity of the Vlasov{Boltzmann equation, with a collision integral given bythe Anderson{Witting prescription, which is more suitable for highly relativistic systemsthan Marle´s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emer-gence of instabilities in an anisotropic, but axially symmetric background. For smalldepartures of isotropy we nd the dispersion relation for normal modes, which admitunstable solutions for a wide range of values of the parameter space
Fil: Calzetta, Esteban Adolfo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Kandus, Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
description We develop a purely hydrodynamic formalism to describe collisional, anisotropic insta-bilities in a relativistic plasma, that are usually described with kinetic theory tools. Ourmain motivation is the fact that coarse-grained models of high particle number systemsgive more clear and comprehensive physical descriptions of those systems than purelykinetic approaches, and can be more easily tested experimentally as well as numerically.Also they make it easier to follow perturbations from linear to nonlinear regimes. In par-ticular, we aim at developing a theory that describes both a background nonequilibriumuid congurations and its perturbations, to be able to account for the backreaction ofthe latter on the former. Our system of equations includes the usual conservation lawsfor the energy{momentum tensor and for the electric current, and the equations for twonew tensors that encode the information about dissipation. To make contact with kinetictheory, we write the dierent tensors as the moments of a nonequilibrium one-particledistribution function (1pdf) which, for illustrative purposes, we take in the form of aGrad-like ansatz. Although this choice limits the applicability of the formalism to statesnot far from equilibrium, it retains the main features of the underlying kinetic theory.Weassume the validity of the Vlasov{Boltzmann equation, with a collision integral given bythe Anderson{Witting prescription, which is more suitable for highly relativistic systemsthan Marle´s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emer-gence of instabilities in an anisotropic, but axially symmetric background. For smalldepartures of isotropy we nd the dispersion relation for normal modes, which admitunstable solutions for a wide range of values of the parameter space
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/49273
Calzetta, Esteban Adolfo; Kandus, Patricia; A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas; World Scientific; International Journal of Modern Physics A; 31; 35; 12-2016; 1-19
0217-751X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/49273
identifier_str_mv Calzetta, Esteban Adolfo; Kandus, Patricia; A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas; World Scientific; International Journal of Modern Physics A; 31; 35; 12-2016; 1-19
0217-751X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613179021197312
score 13.070432