A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
- Autores
- Guarracino, Luis; Rötting, Tobias; Carrera, Jesús
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.
Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; España
Fil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España - Materia
-
DIFFUSION
DISSOLUTION
FRACTAL MODEL
MULTIPHASE FLOW
PORE SIZE DISTRIBUTION
REPRESENTATIVE ELEMENTARY VOLUME
WATER RETENTION CURVE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/79148
Ver los metadatos del registro completo
id |
CONICETDig_381f067b8fb79211ea0913321b874204 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/79148 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolutionGuarracino, LuisRötting, TobiasCarrera, JesúsDIFFUSIONDISSOLUTIONFRACTAL MODELMULTIPHASE FLOWPORE SIZE DISTRIBUTIONREPRESENTATIVE ELEMENTARY VOLUMEWATER RETENTION CURVEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; EspañaFil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; EspañaElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79148Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-860309-1708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2014.02.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0309170814000347info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:38Zoai:ri.conicet.gov.ar:11336/79148instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:39.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
title |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
spellingShingle |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution Guarracino, Luis DIFFUSION DISSOLUTION FRACTAL MODEL MULTIPHASE FLOW PORE SIZE DISTRIBUTION REPRESENTATIVE ELEMENTARY VOLUME WATER RETENTION CURVE |
title_short |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
title_full |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
title_fullStr |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
title_full_unstemmed |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
title_sort |
A fractal model to describe the evolution of multiphase flow properties during mineral dissolution |
dc.creator.none.fl_str_mv |
Guarracino, Luis Rötting, Tobias Carrera, Jesús |
author |
Guarracino, Luis |
author_facet |
Guarracino, Luis Rötting, Tobias Carrera, Jesús |
author_role |
author |
author2 |
Rötting, Tobias Carrera, Jesús |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DIFFUSION DISSOLUTION FRACTAL MODEL MULTIPHASE FLOW PORE SIZE DISTRIBUTION REPRESENTATIVE ELEMENTARY VOLUME WATER RETENTION CURVE |
topic |
DIFFUSION DISSOLUTION FRACTAL MODEL MULTIPHASE FLOW PORE SIZE DISTRIBUTION REPRESENTATIVE ELEMENTARY VOLUME WATER RETENTION CURVE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient. Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; España Fil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España |
description |
Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/79148 Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-86 0309-1708 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/79148 |
identifier_str_mv |
Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-86 0309-1708 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2014.02.011 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0309170814000347 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614267899215872 |
score |
13.070432 |