A fractal model to describe the evolution of multiphase flow properties during mineral dissolution

Autores
Guarracino, Luis; Rötting, Tobias; Carrera, Jesús
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.
Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; España
Fil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España
Materia
DIFFUSION
DISSOLUTION
FRACTAL MODEL
MULTIPHASE FLOW
PORE SIZE DISTRIBUTION
REPRESENTATIVE ELEMENTARY VOLUME
WATER RETENTION CURVE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/79148

id CONICETDig_381f067b8fb79211ea0913321b874204
oai_identifier_str oai:ri.conicet.gov.ar:11336/79148
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A fractal model to describe the evolution of multiphase flow properties during mineral dissolutionGuarracino, LuisRötting, TobiasCarrera, JesúsDIFFUSIONDISSOLUTIONFRACTAL MODELMULTIPHASE FLOWPORE SIZE DISTRIBUTIONREPRESENTATIVE ELEMENTARY VOLUMEWATER RETENTION CURVEhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; EspañaFil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; EspañaElsevier2014-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/79148Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-860309-1708CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2014.02.011info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0309170814000347info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:38Zoai:ri.conicet.gov.ar:11336/79148instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:39.103CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
title A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
spellingShingle A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
Guarracino, Luis
DIFFUSION
DISSOLUTION
FRACTAL MODEL
MULTIPHASE FLOW
PORE SIZE DISTRIBUTION
REPRESENTATIVE ELEMENTARY VOLUME
WATER RETENTION CURVE
title_short A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
title_full A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
title_fullStr A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
title_full_unstemmed A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
title_sort A fractal model to describe the evolution of multiphase flow properties during mineral dissolution
dc.creator.none.fl_str_mv Guarracino, Luis
Rötting, Tobias
Carrera, Jesús
author Guarracino, Luis
author_facet Guarracino, Luis
Rötting, Tobias
Carrera, Jesús
author_role author
author2 Rötting, Tobias
Carrera, Jesús
author2_role author
author
dc.subject.none.fl_str_mv DIFFUSION
DISSOLUTION
FRACTAL MODEL
MULTIPHASE FLOW
PORE SIZE DISTRIBUTION
REPRESENTATIVE ELEMENTARY VOLUME
WATER RETENTION CURVE
topic DIFFUSION
DISSOLUTION
FRACTAL MODEL
MULTIPHASE FLOW
PORE SIZE DISTRIBUTION
REPRESENTATIVE ELEMENTARY VOLUME
WATER RETENTION CURVE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.5
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.
Fil: Guarracino, Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Rötting, Tobias. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España. Universidad Politécnica de Catalunya; España
Fil: Carrera, Jesús. Consejo Superior de Investigaciones Científicas; España. Instituto de Diagnóstico Ambiental y Estudios del Agua; España
description Understanding the changes in multiphase flow parameters caused by mineral dissolution-precipitation is required for multiple applications ranging from geological storage of CO2, enhanced geothermal energy production or ground water pollution. We present a physically-based theoretical model for describing the temporal evolution of porosity, saturated and relative permeabilities, retention curve and diffusion coefficient during rock dissolution by reactive fluids. The derivation of the model is based on the assumption that the pore structure of the rock can be represented by an ensemble of capillary tubes with fractal tortuosity and cumulative pore size distribution. Therefore, the model depends only on the minimum and maximum pore radii, the size of the representative elementary volume and the fractal dimensions of pore size and tortuosity, but do not need any other fitting parameters. Using this fractal description and known physical properties, we obtain analytical expressions for the hydrodynamic properties required by continuum (i.e., Darcy scale) multiphase flow models. Further, assuming periodic fluctuations in the radius of the pores, it is also possible to represent constrictivity and hysteresis. Finally, assuming a constant rate dissolution reaction it is possible to derive closed-form analytical expressions for the time evolution of porosity, retention curve, saturated and relative permeabilities and diffusion coefficient.
publishDate 2014
dc.date.none.fl_str_mv 2014-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/79148
Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-86
0309-1708
CONICET Digital
CONICET
url http://hdl.handle.net/11336/79148
identifier_str_mv Guarracino, Luis; Rötting, Tobias; Carrera, Jesús; A fractal model to describe the evolution of multiphase flow properties during mineral dissolution; Elsevier; Advances in Water Resources; 67; 3-2014; 78-86
0309-1708
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.advwatres.2014.02.011
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0309170814000347
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614267899215872
score 13.070432