Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations
- Autores
- Cristallini, Ernesto Osvaldo; Sánchez Nassif, Francisco Gabriel Antonio; Balciunas, Daniel Eduardo; Mora, Andrés; Ketcham, Richard; Nigro, Joaquín; Hernández, Juan; Hernández, Roberto
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present the development of thermochronological tools for Andino 3D® software, that integrates Fetkin (Finite Element Temperature Kinematics). These tools allow the user to work on both the structural and the thermochronological model at the same time, providing a user-friendly environment that overcomes the need to work with different programs. Thermochronological and structural models can be checked and eventually corrected in a visual and intuitive form by following a 4-step workflow. The first step of such workflow is to define the thermochronological computing grid, checking in real time, if the resolution and coverage are satisfactory. After that, the interpolation process can be done, whereby velocity vectors for all nodes in beds and faults are calculated for all interpolated times. The third step of the workflow consists of filling thermal properties and velocities for all grid cells. The final step is the calculation of the thermal state at each time in the reconstruction. Boundary conditions (basal temperature, basal heat flow, surface temperature and altitude gradient) are defined by mouse picking as constant, spatially varying, time varying or spatially and time varying. To check the feasibility of a structural model, thermochronological samples can be defined at desired positions to predict time-temperature variations. Simulated fission track ages, mean track lengths and age standard deviations can be calculated for different minerals (apatite and zircons). Also, cooling ages and %Ro can be simulated for (U–Th-Sm)/He and vitrinite systems, respectively. The Carohuaicho structure in the southern Bolivia sub-Andean Ranges is presented as a case of study to demonstrate these tools. Andino 3D® allowed us to successfully simulate the t-T paths of four samples where (U–Th-Sm)/He measurements were available. The different models performed permitted us to conclude that a low geothermal gradient was likely to be present during the last 7 Ma of Andean deformation in the study region.
Fil: Cristallini, Ernesto Osvaldo. La.te. Andes S.A. Thermochronology Lab; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina
Fil: Sánchez Nassif, Francisco Gabriel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina
Fil: Balciunas, Daniel Eduardo. La.te. Andes S.A. Thermochronology Lab; Argentina
Fil: Mora, Andrés. Ecopetrol Óleo e Gás do Brasil; Brasil
Fil: Ketcham, Richard. University of Texas at Austin; Estados Unidos
Fil: Nigro, Joaquín. La.te. Andes S.A. Thermochronology Lab; Argentina
Fil: Hernández, Juan. La.te. Andes S.A. Thermochronology Lab; Argentina
Fil: Hernández, Roberto. La.te. Andes S.A. Thermochronology Lab; Argentina - Materia
-
APATITEFISSION TRACK
BOLIVIA
CAROHUAICHO
KINEMATIC EVOLUTION
STRUCTURAL EVOLUTION
SUBANDINE RANGES
THERMOCHRONOLOGY
TIME-TEMPERATURE
U-TH/HE
ZIRCON FISSION TRACK - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/146633
Ver los metadatos del registro completo
id |
CONICETDig_381e1306cfbd4e1f58ed1a0cc088d61b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/146633 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulationsCristallini, Ernesto OsvaldoSánchez Nassif, Francisco Gabriel AntonioBalciunas, Daniel EduardoMora, AndrésKetcham, RichardNigro, JoaquínHernández, JuanHernández, RobertoAPATITEFISSION TRACKBOLIVIACAROHUAICHOKINEMATIC EVOLUTIONSTRUCTURAL EVOLUTIONSUBANDINE RANGESTHERMOCHRONOLOGYTIME-TEMPERATUREU-TH/HEZIRCON FISSION TRACKhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1We present the development of thermochronological tools for Andino 3D® software, that integrates Fetkin (Finite Element Temperature Kinematics). These tools allow the user to work on both the structural and the thermochronological model at the same time, providing a user-friendly environment that overcomes the need to work with different programs. Thermochronological and structural models can be checked and eventually corrected in a visual and intuitive form by following a 4-step workflow. The first step of such workflow is to define the thermochronological computing grid, checking in real time, if the resolution and coverage are satisfactory. After that, the interpolation process can be done, whereby velocity vectors for all nodes in beds and faults are calculated for all interpolated times. The third step of the workflow consists of filling thermal properties and velocities for all grid cells. The final step is the calculation of the thermal state at each time in the reconstruction. Boundary conditions (basal temperature, basal heat flow, surface temperature and altitude gradient) are defined by mouse picking as constant, spatially varying, time varying or spatially and time varying. To check the feasibility of a structural model, thermochronological samples can be defined at desired positions to predict time-temperature variations. Simulated fission track ages, mean track lengths and age standard deviations can be calculated for different minerals (apatite and zircons). Also, cooling ages and %Ro can be simulated for (U–Th-Sm)/He and vitrinite systems, respectively. The Carohuaicho structure in the southern Bolivia sub-Andean Ranges is presented as a case of study to demonstrate these tools. Andino 3D® allowed us to successfully simulate the t-T paths of four samples where (U–Th-Sm)/He measurements were available. The different models performed permitted us to conclude that a low geothermal gradient was likely to be present during the last 7 Ma of Andean deformation in the study region.Fil: Cristallini, Ernesto Osvaldo. La.te. Andes S.A. Thermochronology Lab; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; ArgentinaFil: Sánchez Nassif, Francisco Gabriel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Balciunas, Daniel Eduardo. La.te. Andes S.A. Thermochronology Lab; ArgentinaFil: Mora, Andrés. Ecopetrol Óleo e Gás do Brasil; BrasilFil: Ketcham, Richard. University of Texas at Austin; Estados UnidosFil: Nigro, Joaquín. La.te. Andes S.A. Thermochronology Lab; ArgentinaFil: Hernández, Juan. La.te. Andes S.A. Thermochronology Lab; ArgentinaFil: Hernández, Roberto. La.te. Andes S.A. Thermochronology Lab; ArgentinaPergamon-Elsevier Science Ltd2021-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/146633Cristallini, Ernesto Osvaldo; Sánchez Nassif, Francisco Gabriel Antonio; Balciunas, Daniel Eduardo; Mora, Andrés; Ketcham, Richard; et al.; Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations; Pergamon-Elsevier Science Ltd; Journal of South American Earth Sciences; 105; 1-2021; 1-160895-9811CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0895981120303941info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsames.2020.102851info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:06:12Zoai:ri.conicet.gov.ar:11336/146633instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:06:12.898CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
title |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
spellingShingle |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations Cristallini, Ernesto Osvaldo APATITEFISSION TRACK BOLIVIA CAROHUAICHO KINEMATIC EVOLUTION STRUCTURAL EVOLUTION SUBANDINE RANGES THERMOCHRONOLOGY TIME-TEMPERATURE U-TH/HE ZIRCON FISSION TRACK |
title_short |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
title_full |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
title_fullStr |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
title_full_unstemmed |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
title_sort |
Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations |
dc.creator.none.fl_str_mv |
Cristallini, Ernesto Osvaldo Sánchez Nassif, Francisco Gabriel Antonio Balciunas, Daniel Eduardo Mora, Andrés Ketcham, Richard Nigro, Joaquín Hernández, Juan Hernández, Roberto |
author |
Cristallini, Ernesto Osvaldo |
author_facet |
Cristallini, Ernesto Osvaldo Sánchez Nassif, Francisco Gabriel Antonio Balciunas, Daniel Eduardo Mora, Andrés Ketcham, Richard Nigro, Joaquín Hernández, Juan Hernández, Roberto |
author_role |
author |
author2 |
Sánchez Nassif, Francisco Gabriel Antonio Balciunas, Daniel Eduardo Mora, Andrés Ketcham, Richard Nigro, Joaquín Hernández, Juan Hernández, Roberto |
author2_role |
author author author author author author author |
dc.subject.none.fl_str_mv |
APATITEFISSION TRACK BOLIVIA CAROHUAICHO KINEMATIC EVOLUTION STRUCTURAL EVOLUTION SUBANDINE RANGES THERMOCHRONOLOGY TIME-TEMPERATURE U-TH/HE ZIRCON FISSION TRACK |
topic |
APATITEFISSION TRACK BOLIVIA CAROHUAICHO KINEMATIC EVOLUTION STRUCTURAL EVOLUTION SUBANDINE RANGES THERMOCHRONOLOGY TIME-TEMPERATURE U-TH/HE ZIRCON FISSION TRACK |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present the development of thermochronological tools for Andino 3D® software, that integrates Fetkin (Finite Element Temperature Kinematics). These tools allow the user to work on both the structural and the thermochronological model at the same time, providing a user-friendly environment that overcomes the need to work with different programs. Thermochronological and structural models can be checked and eventually corrected in a visual and intuitive form by following a 4-step workflow. The first step of such workflow is to define the thermochronological computing grid, checking in real time, if the resolution and coverage are satisfactory. After that, the interpolation process can be done, whereby velocity vectors for all nodes in beds and faults are calculated for all interpolated times. The third step of the workflow consists of filling thermal properties and velocities for all grid cells. The final step is the calculation of the thermal state at each time in the reconstruction. Boundary conditions (basal temperature, basal heat flow, surface temperature and altitude gradient) are defined by mouse picking as constant, spatially varying, time varying or spatially and time varying. To check the feasibility of a structural model, thermochronological samples can be defined at desired positions to predict time-temperature variations. Simulated fission track ages, mean track lengths and age standard deviations can be calculated for different minerals (apatite and zircons). Also, cooling ages and %Ro can be simulated for (U–Th-Sm)/He and vitrinite systems, respectively. The Carohuaicho structure in the southern Bolivia sub-Andean Ranges is presented as a case of study to demonstrate these tools. Andino 3D® allowed us to successfully simulate the t-T paths of four samples where (U–Th-Sm)/He measurements were available. The different models performed permitted us to conclude that a low geothermal gradient was likely to be present during the last 7 Ma of Andean deformation in the study region. Fil: Cristallini, Ernesto Osvaldo. La.te. Andes S.A. Thermochronology Lab; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Estudios Andinos "Don Pablo Groeber". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Estudios Andinos "Don Pablo Groeber"; Argentina Fil: Sánchez Nassif, Francisco Gabriel Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; Argentina Fil: Balciunas, Daniel Eduardo. La.te. Andes S.A. Thermochronology Lab; Argentina Fil: Mora, Andrés. Ecopetrol Óleo e Gás do Brasil; Brasil Fil: Ketcham, Richard. University of Texas at Austin; Estados Unidos Fil: Nigro, Joaquín. La.te. Andes S.A. Thermochronology Lab; Argentina Fil: Hernández, Juan. La.te. Andes S.A. Thermochronology Lab; Argentina Fil: Hernández, Roberto. La.te. Andes S.A. Thermochronology Lab; Argentina |
description |
We present the development of thermochronological tools for Andino 3D® software, that integrates Fetkin (Finite Element Temperature Kinematics). These tools allow the user to work on both the structural and the thermochronological model at the same time, providing a user-friendly environment that overcomes the need to work with different programs. Thermochronological and structural models can be checked and eventually corrected in a visual and intuitive form by following a 4-step workflow. The first step of such workflow is to define the thermochronological computing grid, checking in real time, if the resolution and coverage are satisfactory. After that, the interpolation process can be done, whereby velocity vectors for all nodes in beds and faults are calculated for all interpolated times. The third step of the workflow consists of filling thermal properties and velocities for all grid cells. The final step is the calculation of the thermal state at each time in the reconstruction. Boundary conditions (basal temperature, basal heat flow, surface temperature and altitude gradient) are defined by mouse picking as constant, spatially varying, time varying or spatially and time varying. To check the feasibility of a structural model, thermochronological samples can be defined at desired positions to predict time-temperature variations. Simulated fission track ages, mean track lengths and age standard deviations can be calculated for different minerals (apatite and zircons). Also, cooling ages and %Ro can be simulated for (U–Th-Sm)/He and vitrinite systems, respectively. The Carohuaicho structure in the southern Bolivia sub-Andean Ranges is presented as a case of study to demonstrate these tools. Andino 3D® allowed us to successfully simulate the t-T paths of four samples where (U–Th-Sm)/He measurements were available. The different models performed permitted us to conclude that a low geothermal gradient was likely to be present during the last 7 Ma of Andean deformation in the study region. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/146633 Cristallini, Ernesto Osvaldo; Sánchez Nassif, Francisco Gabriel Antonio; Balciunas, Daniel Eduardo; Mora, Andrés; Ketcham, Richard; et al.; Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations; Pergamon-Elsevier Science Ltd; Journal of South American Earth Sciences; 105; 1-2021; 1-16 0895-9811 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/146633 |
identifier_str_mv |
Cristallini, Ernesto Osvaldo; Sánchez Nassif, Francisco Gabriel Antonio; Balciunas, Daniel Eduardo; Mora, Andrés; Ketcham, Richard; et al.; Seamless low-temperature thermochronological modeling in Andino 3D, towards integrated structural and thermal simulations; Pergamon-Elsevier Science Ltd; Journal of South American Earth Sciences; 105; 1-2021; 1-16 0895-9811 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0895981120303941 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsames.2020.102851 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980251410366464 |
score |
12.993085 |