Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels

Autores
Uriz, I.; Arzamendi, G.; Lopez, Eduardo; Llorca, J.; Gandía, L. M.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming (ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model describing the ESR on a Co3O4-ZnO catalyst has been established and implemented in the CFD codes. This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and CH4, acetaldehyde steam reforming to H2 and CO2 and water-gas shift as the reactions describing the catalyst behavior. The very different thermal effects and apparent activation energies of these reactions allow interpreting the influence of the main operating parameters on the microreactors performance. The high activation energy and relatively low energy demand of the ethanol decomposition limit the production of hydrogen at high temperatures and space velocities (up to 70,000h-1) at yields of the order of 70%, that is, 4.2mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation and acetaldehyde reforming. The microchannel characteristic size in the 0.10-0.70mm range has a strong influence on the microreactor performance that is mainly governed by the surface area-to-volume ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow of the gases is nearly isothermal.
Fil: Uriz, I.. Universidad Pública de Navarra; España
Fil: Arzamendi, G.. Universidad Pública de Navarra; España
Fil: Lopez, Eduardo. Universidad Politécnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Llorca, J.. Universidad Politécnica de Catalunya; España
Fil: Gandía, L. M.. Universidad Pública de Navarra; España
Materia
Computational Fluid Dynamics (Cfd)
Ethanol Steam Reforming
Hydrogen
Microchannel Reactor
Microreactor
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55944

id CONICETDig_381370bfec6a240f5ab4fa0ce6839021
oai_identifier_str oai:ri.conicet.gov.ar:11336/55944
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannelsUriz, I.Arzamendi, G.Lopez, EduardoLlorca, J.Gandía, L. M.Computational Fluid Dynamics (Cfd)Ethanol Steam ReformingHydrogenMicrochannel ReactorMicroreactorhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming (ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model describing the ESR on a Co3O4-ZnO catalyst has been established and implemented in the CFD codes. This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and CH4, acetaldehyde steam reforming to H2 and CO2 and water-gas shift as the reactions describing the catalyst behavior. The very different thermal effects and apparent activation energies of these reactions allow interpreting the influence of the main operating parameters on the microreactors performance. The high activation energy and relatively low energy demand of the ethanol decomposition limit the production of hydrogen at high temperatures and space velocities (up to 70,000h-1) at yields of the order of 70%, that is, 4.2mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation and acetaldehyde reforming. The microchannel characteristic size in the 0.10-0.70mm range has a strong influence on the microreactor performance that is mainly governed by the surface area-to-volume ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow of the gases is nearly isothermal.Fil: Uriz, I.. Universidad Pública de Navarra; EspañaFil: Arzamendi, G.. Universidad Pública de Navarra; EspañaFil: Lopez, Eduardo. Universidad Politécnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Llorca, J.. Universidad Politécnica de Catalunya; EspañaFil: Gandía, L. M.. Universidad Pública de Navarra; EspañaElsevier Science Sa2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55944Uriz, I.; Arzamendi, G.; Lopez, Eduardo; Llorca, J.; Gandía, L. M.; Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels; Elsevier Science Sa; Chemical Engineering Journal; 167; 2-3; 3-2011; 603-6091385-8947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2010.07.070info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894710009721info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T11:47:45Zoai:ri.conicet.gov.ar:11336/55944instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 11:47:45.466CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
title Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
spellingShingle Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
Uriz, I.
Computational Fluid Dynamics (Cfd)
Ethanol Steam Reforming
Hydrogen
Microchannel Reactor
Microreactor
title_short Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
title_full Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
title_fullStr Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
title_full_unstemmed Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
title_sort Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels
dc.creator.none.fl_str_mv Uriz, I.
Arzamendi, G.
Lopez, Eduardo
Llorca, J.
Gandía, L. M.
author Uriz, I.
author_facet Uriz, I.
Arzamendi, G.
Lopez, Eduardo
Llorca, J.
Gandía, L. M.
author_role author
author2 Arzamendi, G.
Lopez, Eduardo
Llorca, J.
Gandía, L. M.
author2_role author
author
author
author
dc.subject.none.fl_str_mv Computational Fluid Dynamics (Cfd)
Ethanol Steam Reforming
Hydrogen
Microchannel Reactor
Microreactor
topic Computational Fluid Dynamics (Cfd)
Ethanol Steam Reforming
Hydrogen
Microchannel Reactor
Microreactor
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming (ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model describing the ESR on a Co3O4-ZnO catalyst has been established and implemented in the CFD codes. This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and CH4, acetaldehyde steam reforming to H2 and CO2 and water-gas shift as the reactions describing the catalyst behavior. The very different thermal effects and apparent activation energies of these reactions allow interpreting the influence of the main operating parameters on the microreactors performance. The high activation energy and relatively low energy demand of the ethanol decomposition limit the production of hydrogen at high temperatures and space velocities (up to 70,000h-1) at yields of the order of 70%, that is, 4.2mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation and acetaldehyde reforming. The microchannel characteristic size in the 0.10-0.70mm range has a strong influence on the microreactor performance that is mainly governed by the surface area-to-volume ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow of the gases is nearly isothermal.
Fil: Uriz, I.. Universidad Pública de Navarra; España
Fil: Arzamendi, G.. Universidad Pública de Navarra; España
Fil: Lopez, Eduardo. Universidad Politécnica de Catalunya; España. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Llorca, J.. Universidad Politécnica de Catalunya; España
Fil: Gandía, L. M.. Universidad Pública de Navarra; España
description A three-dimensional computational fluid dynamics (CFD) simulation study of the ethanol steam reforming (ESR) in microreactors with square channels has been carried out. A phenomenological kinetic model describing the ESR on a Co3O4-ZnO catalyst has been established and implemented in the CFD codes. This model includes the ethanol dehydrogenation to acetaldehyde, ethanol decomposition to CO and CH4, acetaldehyde steam reforming to H2 and CO2 and water-gas shift as the reactions describing the catalyst behavior. The very different thermal effects and apparent activation energies of these reactions allow interpreting the influence of the main operating parameters on the microreactors performance. The high activation energy and relatively low energy demand of the ethanol decomposition limit the production of hydrogen at high temperatures and space velocities (up to 70,000h-1) at yields of the order of 70%, that is, 4.2mol of H2 per mol of ethanol fed into the reactor. Another issue is the presence of significant CO contents in the reformate stream. This can be partially solved by increasing the catalyst loading which leads to a lower temperature and then an improved selectivity to ethanol dehydrogenation and acetaldehyde reforming. The microchannel characteristic size in the 0.10-0.70mm range has a strong influence on the microreactor performance that is mainly governed by the surface area-to-volume ratio. For the smallest sizes considered in this study (0.10 and 0.35mm) it has been found that the flow of the gases is nearly isothermal.
publishDate 2011
dc.date.none.fl_str_mv 2011-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55944
Uriz, I.; Arzamendi, G.; Lopez, Eduardo; Llorca, J.; Gandía, L. M.; Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels; Elsevier Science Sa; Chemical Engineering Journal; 167; 2-3; 3-2011; 603-609
1385-8947
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55944
identifier_str_mv Uriz, I.; Arzamendi, G.; Lopez, Eduardo; Llorca, J.; Gandía, L. M.; Computational fluid dynamics simulation of ethanol steam reforming in catalytic wall microchannels; Elsevier Science Sa; Chemical Engineering Journal; 167; 2-3; 3-2011; 603-609
1385-8947
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.cej.2010.07.070
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S1385894710009721
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Sa
publisher.none.fl_str_mv Elsevier Science Sa
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1847426484223868928
score 13.10058