Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant
- Autores
- Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity.
Fil: Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano. Universidad Nacional del Nordeste. Facultad de Arquitectura y Urbanismo. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano.; Argentina
Fil: Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
Fil: Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
Fil: Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina
Fil: Farías, Alejandro R.. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina - Materia
-
RANDOM FOREST
REMOTE SENSING
SENTINEL-2
TURBIDITY
WATER QUALITY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/274809
Ver los metadatos del registro completo
| id |
CONICETDig_37a3419f3e4802e8dcef4524e55fce45 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/274809 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment PlantGauto, Víctor HugoUtgés, Enid MartaHervot, Elsa IvonneTenev, María DanielaFarías, Alejandro R.RANDOM FORESTREMOTE SENSINGSENTINEL-2TURBIDITYWATER QUALITYhttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity.Fil: Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano. Universidad Nacional del Nordeste. Facultad de Arquitectura y Urbanismo. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano.; ArgentinaFil: Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaFil: Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaFil: Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaFil: Farías, Alejandro R.. Universidad Tecnológica Nacional. Facultad Regional Resistencia; ArgentinaThe International Centre for Sustainable Development of Energy, Water and Environment Systems2025-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/274809Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.; Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant; The International Centre for Sustainable Development of Energy, Water and Environment Systems; Journal of Sustainable Development of Energy, Water and Environment Systems; 13; 2; 6-2025; 1-171848-9257CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sdewes.org/jsdewes/pid13.0539info:eu-repo/semantics/altIdentifier/doi/10.13044/j.sdewes.d13.0539info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-12-03T09:45:16Zoai:ri.conicet.gov.ar:11336/274809instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-12-03 09:45:17.162CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| title |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| spellingShingle |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant Gauto, Víctor Hugo RANDOM FOREST REMOTE SENSING SENTINEL-2 TURBIDITY WATER QUALITY |
| title_short |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| title_full |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| title_fullStr |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| title_full_unstemmed |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| title_sort |
Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant |
| dc.creator.none.fl_str_mv |
Gauto, Víctor Hugo Utgés, Enid Marta Hervot, Elsa Ivonne Tenev, María Daniela Farías, Alejandro R. |
| author |
Gauto, Víctor Hugo |
| author_facet |
Gauto, Víctor Hugo Utgés, Enid Marta Hervot, Elsa Ivonne Tenev, María Daniela Farías, Alejandro R. |
| author_role |
author |
| author2 |
Utgés, Enid Marta Hervot, Elsa Ivonne Tenev, María Daniela Farías, Alejandro R. |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
RANDOM FOREST REMOTE SENSING SENTINEL-2 TURBIDITY WATER QUALITY |
| topic |
RANDOM FOREST REMOTE SENSING SENTINEL-2 TURBIDITY WATER QUALITY |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity. Fil: Gauto, Víctor Hugo. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano. Universidad Nacional del Nordeste. Facultad de Arquitectura y Urbanismo. Instituto de Investigación para el Desarrollo Territorial y del Hábitat Humano.; Argentina Fil: Utgés, Enid Marta. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Hervot, Elsa Ivonne. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Tenev, María Daniela. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina Fil: Farías, Alejandro R.. Universidad Tecnológica Nacional. Facultad Regional Resistencia; Argentina |
| description |
Clean water is a scarce resource, fundamental for human development and well-being. Remote sensing techniques are used to monitor and retrieve quality estimators from water bodies. In situ sampling is an essential and labour-intensive task with high costs. As an alternative, a large water quality dataset from a potabilisation plant can be beneficial to this step. Combining laboratory measurements from a water treatment plant in North-East Argentina and spectral data from the Sentinel-2 satellite platform, several regression algorithms were proposed, trained, and compared for turbidity estimation at the plant inlet water in a local river. The highest performance metrics were from a Random Forest model with a coefficient of determination close to 1 (0.913) and the lowest root-mean-squared error (143.9 nephelometric turbidity units). Global feature importance and partial dependencies profile techniques identified the most influential spectral bands. Maps and histograms were made to explore the spatial distribution of turbidity. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-06 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/274809 Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.; Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant; The International Centre for Sustainable Development of Energy, Water and Environment Systems; Journal of Sustainable Development of Energy, Water and Environment Systems; 13; 2; 6-2025; 1-17 1848-9257 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/274809 |
| identifier_str_mv |
Gauto, Víctor Hugo; Utgés, Enid Marta; Hervot, Elsa Ivonne; Tenev, María Daniela; Farías, Alejandro R.; Turbidity Estimation by Machine Learning Modelling and Remote Sensing Techniques Applied to a Water Treatment Plant; The International Centre for Sustainable Development of Energy, Water and Environment Systems; Journal of Sustainable Development of Energy, Water and Environment Systems; 13; 2; 6-2025; 1-17 1848-9257 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sdewes.org/jsdewes/pid13.0539 info:eu-repo/semantics/altIdentifier/doi/10.13044/j.sdewes.d13.0539 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
The International Centre for Sustainable Development of Energy, Water and Environment Systems |
| publisher.none.fl_str_mv |
The International Centre for Sustainable Development of Energy, Water and Environment Systems |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1850505884477685760 |
| score |
13.214268 |