Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae)
- Autores
- Manara, Enzo; Saveanu, Lucía; Martín, Pablo Rafael
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Lithic particles are a common feature in the digestive tract of freshwater snails. Their role in the digestive processes has been demonstrated in some microphytophagous and detritivorous species, as they enhance growth, assimilation and reproduction. It has been suggested that they could have the same function in Pomacea canaliculata, a macrophytophagous apple snail with powerful jaws and radula, a strongly muscular and cuticularized gizzard and high levels of enzymatic activity. Our aims were to investigate the occurrence of lithic elements in the digestive tract of P. canaliculata snails from natural populations through the analyses of digestive contents, as well as the effect of size and availability of lithic particles on growth and growth efficiency through laboratory experiments. Lithic particles are very common in the digestive tract of P. canaliculata from natural populations and from laboratory aquaria if they are available in the immediate environment. Such particles are not retained or concentrated differentially in the stomach and they are apparently totally lost in less than four weeks if the supply is interrupted. The frequency of plant material and lithic particles increases from mouth to anus indicating that the retention time increases in the same way. Sand and plant material frequently co-occur in the intestine and in the stomach indicating that both are ingested together. Ground marble had negative effects on the growth of P. canaliculata probably due to the sharp edges and pointed ends of these particles. The availability of natural lithic particles (sand) had a positive effect on growth and also a synergic interaction with the availability of food. The growth efficiency was 25.2% higher when sand was available than when it was absent. These effects were more marked in juvenile females than in juvenile males. Our results indicate that growth rates may be underestimated under laboratory conditions if lithic particles are not supplied regularly and that their presence should be standardized to allow reliable comparisons between studies. Our results also indicate that the effects of food availability and plant palatability on the growth of P. canaliculata may be modulated by the presence of lithic particles and this may in turn affect the outcome of interactions between apple snails, other snails and macrophytes.
Fil: Manara, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina
Fil: Saveanu, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina
Fil: Martín, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina - Materia
-
Invader
Feeding
Digestion
Trophic ecology
Growth efficiency - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/42414
Ver los metadatos del registro completo
id |
CONICETDig_379ff8f370db03a16fbb95d7bc706998 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/42414 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae)Manara, EnzoSaveanu, LucíaMartín, Pablo RafaelInvaderFeedingDigestionTrophic ecologyGrowth efficiencyhttps://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1Lithic particles are a common feature in the digestive tract of freshwater snails. Their role in the digestive processes has been demonstrated in some microphytophagous and detritivorous species, as they enhance growth, assimilation and reproduction. It has been suggested that they could have the same function in Pomacea canaliculata, a macrophytophagous apple snail with powerful jaws and radula, a strongly muscular and cuticularized gizzard and high levels of enzymatic activity. Our aims were to investigate the occurrence of lithic elements in the digestive tract of P. canaliculata snails from natural populations through the analyses of digestive contents, as well as the effect of size and availability of lithic particles on growth and growth efficiency through laboratory experiments. Lithic particles are very common in the digestive tract of P. canaliculata from natural populations and from laboratory aquaria if they are available in the immediate environment. Such particles are not retained or concentrated differentially in the stomach and they are apparently totally lost in less than four weeks if the supply is interrupted. The frequency of plant material and lithic particles increases from mouth to anus indicating that the retention time increases in the same way. Sand and plant material frequently co-occur in the intestine and in the stomach indicating that both are ingested together. Ground marble had negative effects on the growth of P. canaliculata probably due to the sharp edges and pointed ends of these particles. The availability of natural lithic particles (sand) had a positive effect on growth and also a synergic interaction with the availability of food. The growth efficiency was 25.2% higher when sand was available than when it was absent. These effects were more marked in juvenile females than in juvenile males. Our results indicate that growth rates may be underestimated under laboratory conditions if lithic particles are not supplied regularly and that their presence should be standardized to allow reliable comparisons between studies. Our results also indicate that the effects of food availability and plant palatability on the growth of P. canaliculata may be modulated by the presence of lithic particles and this may in turn affect the outcome of interactions between apple snails, other snails and macrophytes.Fil: Manara, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; ArgentinaFil: Saveanu, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; ArgentinaFil: Martín, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; ArgentinaInstitute of Malacology2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/42414Manara, Enzo; Saveanu, Lucía; Martín, Pablo Rafael; Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae); Institute of Malacology; Malacologia; 59; 2; 12-2016; 211-2220076-2997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.4002/040.059.0202info:eu-repo/semantics/altIdentifier/url/http://www.bioone.org/doi/10.4002/040.059.0202info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:37:48Zoai:ri.conicet.gov.ar:11336/42414instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:37:49.163CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
title |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
spellingShingle |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) Manara, Enzo Invader Feeding Digestion Trophic ecology Growth efficiency |
title_short |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
title_full |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
title_fullStr |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
title_full_unstemmed |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
title_sort |
Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae) |
dc.creator.none.fl_str_mv |
Manara, Enzo Saveanu, Lucía Martín, Pablo Rafael |
author |
Manara, Enzo |
author_facet |
Manara, Enzo Saveanu, Lucía Martín, Pablo Rafael |
author_role |
author |
author2 |
Saveanu, Lucía Martín, Pablo Rafael |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Invader Feeding Digestion Trophic ecology Growth efficiency |
topic |
Invader Feeding Digestion Trophic ecology Growth efficiency |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Lithic particles are a common feature in the digestive tract of freshwater snails. Their role in the digestive processes has been demonstrated in some microphytophagous and detritivorous species, as they enhance growth, assimilation and reproduction. It has been suggested that they could have the same function in Pomacea canaliculata, a macrophytophagous apple snail with powerful jaws and radula, a strongly muscular and cuticularized gizzard and high levels of enzymatic activity. Our aims were to investigate the occurrence of lithic elements in the digestive tract of P. canaliculata snails from natural populations through the analyses of digestive contents, as well as the effect of size and availability of lithic particles on growth and growth efficiency through laboratory experiments. Lithic particles are very common in the digestive tract of P. canaliculata from natural populations and from laboratory aquaria if they are available in the immediate environment. Such particles are not retained or concentrated differentially in the stomach and they are apparently totally lost in less than four weeks if the supply is interrupted. The frequency of plant material and lithic particles increases from mouth to anus indicating that the retention time increases in the same way. Sand and plant material frequently co-occur in the intestine and in the stomach indicating that both are ingested together. Ground marble had negative effects on the growth of P. canaliculata probably due to the sharp edges and pointed ends of these particles. The availability of natural lithic particles (sand) had a positive effect on growth and also a synergic interaction with the availability of food. The growth efficiency was 25.2% higher when sand was available than when it was absent. These effects were more marked in juvenile females than in juvenile males. Our results indicate that growth rates may be underestimated under laboratory conditions if lithic particles are not supplied regularly and that their presence should be standardized to allow reliable comparisons between studies. Our results also indicate that the effects of food availability and plant palatability on the growth of P. canaliculata may be modulated by the presence of lithic particles and this may in turn affect the outcome of interactions between apple snails, other snails and macrophytes. Fil: Manara, Enzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina Fil: Saveanu, Lucía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina Fil: Martín, Pablo Rafael. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias Biológicas y Biomédicas del Sur. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia. Instituto de Ciencias Biológicas y Biomédicas del Sur; Argentina |
description |
Lithic particles are a common feature in the digestive tract of freshwater snails. Their role in the digestive processes has been demonstrated in some microphytophagous and detritivorous species, as they enhance growth, assimilation and reproduction. It has been suggested that they could have the same function in Pomacea canaliculata, a macrophytophagous apple snail with powerful jaws and radula, a strongly muscular and cuticularized gizzard and high levels of enzymatic activity. Our aims were to investigate the occurrence of lithic elements in the digestive tract of P. canaliculata snails from natural populations through the analyses of digestive contents, as well as the effect of size and availability of lithic particles on growth and growth efficiency through laboratory experiments. Lithic particles are very common in the digestive tract of P. canaliculata from natural populations and from laboratory aquaria if they are available in the immediate environment. Such particles are not retained or concentrated differentially in the stomach and they are apparently totally lost in less than four weeks if the supply is interrupted. The frequency of plant material and lithic particles increases from mouth to anus indicating that the retention time increases in the same way. Sand and plant material frequently co-occur in the intestine and in the stomach indicating that both are ingested together. Ground marble had negative effects on the growth of P. canaliculata probably due to the sharp edges and pointed ends of these particles. The availability of natural lithic particles (sand) had a positive effect on growth and also a synergic interaction with the availability of food. The growth efficiency was 25.2% higher when sand was available than when it was absent. These effects were more marked in juvenile females than in juvenile males. Our results indicate that growth rates may be underestimated under laboratory conditions if lithic particles are not supplied regularly and that their presence should be standardized to allow reliable comparisons between studies. Our results also indicate that the effects of food availability and plant palatability on the growth of P. canaliculata may be modulated by the presence of lithic particles and this may in turn affect the outcome of interactions between apple snails, other snails and macrophytes. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/42414 Manara, Enzo; Saveanu, Lucía; Martín, Pablo Rafael; Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae); Institute of Malacology; Malacologia; 59; 2; 12-2016; 211-222 0076-2997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/42414 |
identifier_str_mv |
Manara, Enzo; Saveanu, Lucía; Martín, Pablo Rafael; Effects of Ingestion of Lithic Particles on Growth of the Apple Snail Pomacea canaliculata (Caenogastropoda, Ampullariidae); Institute of Malacology; Malacologia; 59; 2; 12-2016; 211-222 0076-2997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.4002/040.059.0202 info:eu-repo/semantics/altIdentifier/url/http://www.bioone.org/doi/10.4002/040.059.0202 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Malacology |
publisher.none.fl_str_mv |
Institute of Malacology |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082853263114240 |
score |
13.22299 |